On the blow-up threshold for weakly coupled nonlinear Schrodinger equations

被引:38
作者
Fanelli, Luca [1 ]
Montefusco, Eugenio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartmento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1088/1751-8113/40/47/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Cauchy problem for a system of two coupled nonlinear focusing Schrodinger equations arising in nonlinear optics. We discuss when the solutions are global in time or blow-up in finite time. Some results, in dependence of the data of the problem, are proved; in particular we prove, for suitable values of the parameters, that the blow-up threshold ( if the nonlinearity has the critical growth) is a universal constant.
引用
收藏
页码:14139 / 14150
页数:12
相关论文
共 29 条
[1]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[2]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[3]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[4]   Bilinear eigenfunction estimates and the nonlinear Schrodinger equation on surfaces [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
INVENTIONES MATHEMATICAE, 2005, 159 (01) :187-223
[5]   Two singular dynamics of the nonlinear Schrodinger equation on a plane domain [J].
Burq, N ;
Gerard, P ;
Tzvetkov, N .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :1-19
[6]  
Cazenave T., 1996, TEXTOS METODOS MATEM, V26
[7]  
DEFIGUEIREDO D, SOLITARY WAVES SOME, DOI DOI 10.1016/J.ANIHPC.2006.11.006
[8]   Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension [J].
Fibich, G ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :183-240
[9]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[10]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32