On the blow-up threshold for weakly coupled nonlinear Schrodinger equations

被引:36
|
作者
Fanelli, Luca [1 ]
Montefusco, Eugenio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartmento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1088/1751-8113/40/47/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Cauchy problem for a system of two coupled nonlinear focusing Schrodinger equations arising in nonlinear optics. We discuss when the solutions are global in time or blow-up in finite time. Some results, in dependence of the data of the problem, are proved; in particular we prove, for suitable values of the parameters, that the blow-up threshold ( if the nonlinearity has the critical growth) is a universal constant.
引用
收藏
页码:14139 / 14150
页数:12
相关论文
共 50 条
  • [1] A sharp threshold of blow-up for coupled nonlinear Schrodinger equations
    Li, Xiaoguang
    Wu, Yonghong
    Lai, Shaoyong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [2] BLOW-UP SOLUTIONS FOR N COUPLED SCHRODINGER EQUATIONS
    Chen, Jianqing
    Guo, Boling
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [3] Blow-up solutions for mixed nonlinear Schrodinger equations
    Tan, SB
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (01) : 115 - 124
  • [4] Dispersive blow-up for nonlinear Schrodinger equations revisited
    Bona, J. L.
    Ponce, G.
    Saut, J-C
    Sparber, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 782 - 811
  • [5] Blow-up solutions of inhomogeneous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (02) : 137 - 169
  • [6] Blow-up criteria for fractional nonlinear Schrodinger equations
    Van Duong Dinh
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 : 117 - 140
  • [7] BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHRODINGER EQUATIONS IN THE RADIAL CASE
    Bai, Qianqian
    Li, Xiaoguang
    Zhang, Li
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1852 - 1864
  • [8] BLOW-UP OF SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH OSCILLATING NONLINEARITIES
    Ozsari, Turker
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 539 - 558
  • [9] BLOW-UP CRITERIA FOR LINEARLY DAMPED NONLINEAR SCHRODINGER EQUATIONS
    Van Duong Dinh
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 599 - 617
  • [10] Blow-up solutions to a class of generalized Nonlinear Schrodinger equations
    Chen, Ning
    Tian, Baodan
    Chen, Jiqian
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (03): : 881 - 886