Shape-preserving interpolants with high smoothness

被引:16
作者
Cravero, I
Manni, C
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
shape preserving; interpolation; parametric curves; Bezier curves;
D O I
10.1016/S0377-0427(03)00418-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to introduce a new method to construct a C(3) function which interpolates a given set of data in a shape-preserving way. The resulting function is a parametric quintic curve whose shape is controlled by tension parameters which have a direct geometric meaning. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:383 / 405
页数:23
相关论文
共 20 条
[2]  
APPLEGARTH I, 2000, BENCHMARK TESTS GENE
[3]   Shape-preserving C3 interpolation:: the curve case [J].
Costantini, P ;
Manni, C .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (01) :41-63
[4]   AN ALGORITHM FOR COMPUTING SHAPE-PRESERVING INTERPOLATING SPLINES OF ARBITRARY DEGREE [J].
COSTANTINI, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 22 (01) :89-136
[5]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[6]  
COSTANTINI P, 1986, MATH COMPUT, V46, P203, DOI 10.1090/S0025-5718-1986-0815841-7
[7]   C2 RATIONAL QUADRATIC SPLINE INTERPOLATION TO MONOTONIC DATA [J].
DELBOURGO, R ;
GREGORY, JA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) :141-152
[8]  
Goodman T. N. T., 2002, ALGORITHMS APPROXIMA, V4, P24
[9]  
Goodman TNT, 1996, MATH APPL, V359, P157
[10]   Behaviour of exponential splines as tensions increase without bound [J].
Grandison, C .
JOURNAL OF APPROXIMATION THEORY, 1997, 89 (03) :289-307