One-dimensional van der Waals quantum materials

被引:98
作者
Balandin, Alexander A. [1 ]
Kargar, Fariborz [1 ]
Salguero, Tina T. [2 ]
Lake, Roger K. [1 ]
机构
[1] Univ Calif, Dept Elect & Comp Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Univ Georgia, Dept Chem, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
One-dimensional materials; Van der Waals materials; Charge-density waves; Current density; Composites; DENSITY-WAVE TRANSPORT; TRANSITION-METAL TRICHALCOGENIDES; CURRENT-CARRYING CAPACITY; GIANT OPTICAL ANISOTROPY; THERMAL-CONDUCTIVITY; TOPOLOGICAL INSULATOR; THERMOELECTRIC PROPERTIES; SINGLE-LAYER; SCALABLE PRODUCTION; CARBON NANOTUBES;
D O I
10.1016/j.mattod.2022.03.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advent of graphene and other two-dimensional van der Waals materials, with their unique electrical, optical, and thermal properties has resulted in tremendous progress for fundamental science. Recent developments suggest that taking one more step down in dimensionality - from mono-layer atomic sheets to individual atomic chains - can bring exciting prospects in fundamental science and practical applications. The atomic chain is the ultimate limit in material downscaling, a frontier for establishing an entirely new field of one-dimensional quantum materials. Here, we review this emerging area of one-dimensional van der Waals quantum materials and anticipate its future directions. We focus on quantum effects associated with the charge-density-wave condensate, strongly correlated phenomena, topological phases, and other unique physical characteristics, which are attainable specifically in van der Waals materials of lower dimensionality. Possibilities for engineering the properties of quasi-one-dimensional materials via compositional changes, vacancies, and defects, as well as their potential applications in composites are also discussed.
引用
收藏
页码:74 / 91
页数:18
相关论文
共 290 条
[1]   Pressure-induced reentrant transition in NbS3 phases: Combined Raman scattering and x-ray diffraction study [J].
Abdel-Hafiez, M. ;
Thiyagarajan, R. ;
Majumdar, A. ;
Ahuja, R. ;
Luo, W. ;
Vasiliev, A. N. ;
Maarouf, A. A. ;
Zybtsev, S. G. ;
Pokrovskii, V. Ya ;
V-Zaitsev-Zotov, S. ;
Pavlovskiy, V. V. ;
Pai, Woei Wu ;
Yang, W. ;
Kulik, L., V .
PHYSICAL REVIEW B, 2019, 99 (23)
[2]   How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite [J].
Abdelkader, A. M. ;
Cooper, A. J. ;
Dryfe, R. A. W. ;
Kinloch, I. A. .
NANOSCALE, 2015, 7 (16) :6944-6956
[3]   FIELD-EFFECT MODULATION OF CHARGE-DENSITY-WAVE TRANSPORT IN NBSE3 AND TAS3 [J].
ADELMAN, TL ;
ZAITSEVZOTOV, SV ;
THORNE, RE .
PHYSICAL REVIEW LETTERS, 1995, 74 (26) :5264-5267
[4]  
Ajayan P, 2016, PHYS TODAY, V69, P39
[5]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[6]   Wavelike charge density fluctuations and van der Waals interactions at the nanoscale [J].
Ambrosetti, Alberto ;
Ferri, Nicola ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
SCIENCE, 2016, 351 (6278) :1171-1176
[7]   Dependence of band structures on stacking and field in layered graphene [J].
Aoki, Masato ;
Amawashi, Hiroshi .
SOLID STATE COMMUNICATIONS, 2007, 142 (03) :123-127
[8]  
Autès G, 2016, NAT MATER, V15, P154, DOI [10.1038/NMAT4488, 10.1038/nmat4488]
[9]  
Baeriswyl D., 2004, Strong Interactions in Low Dimensions
[10]   Charge-density-wave quantum materials and devices-New developments and future prospects [J].
Balandin, Alexander A. ;
Zaitsev-Zotov, Sergei V. ;
Gruner, George .
APPLIED PHYSICS LETTERS, 2021, 119 (17)