Coupling superconducting qubits via a cavity bus

被引:1110
作者
Majer, J. [1 ]
Chow, J. M. [1 ]
Gambetta, J. M. [1 ]
Koch, Jens [1 ]
Johnson, B. R. [1 ]
Schreier, J. A. [1 ]
Frunzio, L. [1 ]
Schuster, D. I. [1 ]
Houck, A. A. [1 ]
Wallraff, A. [1 ]
Blais, A. [1 ]
Devoret, M. H. [1 ]
Girvin, S. M. [1 ]
Schoelkopf, R. J. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
D O I
10.1038/nature06184
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine(1,2), and several examples(3-9) of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 28 条
  • [1] Entangled macroscopic quantum states in two superconducting qubits
    Berkley, AJ
    Xu, H
    Ramos, RC
    Gubrud, MA
    Strauch, FW
    Johnson, PR
    Anderson, JR
    Dragt, AJ
    Lobb, CJ
    Wellstood, FC
    [J]. SCIENCE, 2003, 300 (5625) : 1548 - 1550
  • [2] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [3] Quantum-information processing with circuit quantum electrodynamics
    Blais, Alexandre
    Gambetta, Jay
    Wallraff, A.
    Schuster, D. I.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [4] Functional quantum nodes for entanglement distribution over scalable quantum networks
    Chou, Chin-Wen
    Laurat, Julien
    Deng, Hui
    Choi, Kyung Soo
    de Riedmatten, Hugues
    Felinto, Daniel
    Kimble, H. Jeff
    [J]. SCIENCE, 2007, 316 (5829) : 1316 - 1320
  • [5] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [6] Implementing Qubits with Superconducting Integrated Circuits
    Devoret, Michel H.
    Martinis, John M.
    [J]. QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 163 - 203
  • [7] Long-distance quantum communication with atomic ensembles and linear optics
    Duan, LM
    Lukin, MD
    Cirac, JI
    Zoller, P
    [J]. NATURE, 2001, 414 (6862) : 413 - 418
  • [8] Bulk spin-resonance quantum computation
    Gershenfeld, NA
    Chuang, IL
    [J]. SCIENCE, 1997, 275 (5298) : 350 - 356
  • [9] QUANTUM INTERFERENCE EFFECT FOR 2 ATOMS RADIATING A SINGLE PHOTON
    GRANGIER, P
    ASPECT, A
    VIGUE, J
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (05) : 418 - 421
  • [10] Generation of Einstein-Podolsky-Rosen pairs of atoms
    Hagley, E
    Maitre, X
    Nogues, G
    Wunderlich, C
    Brune, M
    Raimond, JM
    Haroche, S
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (01) : 1 - 5