Differential Harnack Estimates for a Nonlinear Evolution Equation of Allen-Cahn Type

被引:4
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Lagos, Dept Math, Lagos, Nigeria
关键词
Riemannian manifolds; Harnack inequality; Liouville theorems; Gradient estimates; Maximum principle; Ricci tensors; LIOUVILLE THEOREM; POISSON EQUATION; GRADIENT; INEQUALITIES; DIFFUSION;
D O I
10.1007/s00009-021-01864-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss local gradient estimates of Li and Yau type on the smooth bounded positive solutions w : M x [0, infinity) -> R to a nonlinear evolution equation w(t) = Delta w+ a(w-w(3)), where a > 0 is a constant, on a complete Riemannian manifold M. Global estimates are obtained from the local ones, the consequence of which will eventually yield classical Harnack inequalities for Parabolic Allen-Cahn equation and a Liouville type result for steady state solutions under the hypothesis of nonnegative Ricci curvature tensor.
引用
收藏
页数:15
相关论文
共 35 条
[2]   Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow [J].
Abolarinwa, Abimbola ;
Adebimpe, Olukayode ;
Bakare, Emmanuel A. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[4]  
Abolarinwa A, 2015, ELECTRON J DIFFER EQ
[5]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[6]  
[Anonymous], 1993, Commun. Anal. Geom
[7]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[8]   A Harnack inequality for the parabolic Allen-Cahn equation [J].
Bailesteanu, Mihai .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (04) :367-378
[9]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[10]   A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES [J].
CAFFARELLI, L ;
GAROFALO, N ;
SEGALA, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1457-1473