Differential Harnack Estimates for a Nonlinear Evolution Equation of Allen-Cahn Type

被引:4
作者
Abolarinwa, Abimbola [1 ]
机构
[1] Univ Lagos, Dept Math, Lagos, Nigeria
关键词
Riemannian manifolds; Harnack inequality; Liouville theorems; Gradient estimates; Maximum principle; Ricci tensors; LIOUVILLE THEOREM; POISSON EQUATION; GRADIENT; INEQUALITIES; DIFFUSION;
D O I
10.1007/s00009-021-01864-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss local gradient estimates of Li and Yau type on the smooth bounded positive solutions w : M x [0, infinity) -> R to a nonlinear evolution equation w(t) = Delta w+ a(w-w(3)), where a > 0 is a constant, on a complete Riemannian manifold M. Global estimates are obtained from the local ones, the consequence of which will eventually yield classical Harnack inequalities for Parabolic Allen-Cahn equation and a Liouville type result for steady state solutions under the hypothesis of nonnegative Ricci curvature tensor.
引用
收藏
页数:15
相关论文
共 35 条