Improved parameter estimation by noise compensation in the time-scale domain

被引:8
|
作者
McCusker, James R. [1 ]
Currier, Todd [1 ]
Danai, Kourosh [1 ]
机构
[1] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA
关键词
System identification; Noise suppression; Denoising; Parameter estimation; Wavelet transforms;
D O I
10.1016/j.sigpro.2010.06.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It was shown recently that parameter estimation can be performed directly in the time-scale domain by isolating regions wherein the prediction error can be attributed to the error of individual dynamic model parameters [1]. Based on these single-parameter equations of the prediction error, individual model parameters error can be estimated for iterative parameter estimation. An added benefit of this parameter estimation method, besides its unique convergence characteristics, is the added capacity for direct noise compensation in the time-scale domain. This paper explores this benefit by introducing a noise compensation method that estimates the distortion by noise of the prediction error in the time-scale domain and incorporates that as a confidence factor to bias the estimation of individual parameters error. This method is shown to improve the precision of the estimated parameters when the confidence factors accurately represent the noise distortion of the prediction error. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 84
页数:13
相关论文
共 50 条
  • [31] Time-scale analysis of abrupt changes corrupted by multiplicative noise
    Chabert, M
    Tourneret, JY
    Castanie, F
    SIGNAL PROCESSING, 2000, 80 (03) : 397 - 411
  • [32] BLIND AUDIO SEPARATION AND CONTENT ANALYSIS IN THE TIME-SCALE DOMAIN
    Jbari, Atman
    Adib, Abdellah
    Aboutajdine, Driss
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2007, 1 (03) : 307 - 318
  • [33] VALIDATION OF DYNAMIC MODELS BY IMAGE DISTANCES IN THE TIME-SCALE DOMAIN
    Danai, Kourosh
    McCusker, James R.
    Currier, Todd
    Kazmer, David O.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, 2010, : 17 - 24
  • [34] Self-similar set identification in the time-scale domain
    Heidari, S
    Tsihrintzis, GA
    Nikias, CL
    Jonckheere, EA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (06) : 1568 - 1573
  • [35] Assessing Bjerknes Compensation for Climate Variability and Its Time-Scale Dependence
    Zhao, Yingying
    Yang, Haijun
    Liu, Zhengyu
    JOURNAL OF CLIMATE, 2016, 29 (15) : 5501 - 5512
  • [36] Time-scale Space: A New Domain for Reservoir Properties Characterization
    Shahvar, M. B.
    Badounak, N. D.
    Kharrat, R.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (19) : 2113 - 2125
  • [37] A review on time-frequency, time-scale and scale-frequency domain signal analysis
    Samantaray, L
    Dash, M
    Panda, R
    IETE JOURNAL OF RESEARCH, 2005, 51 (04) : 287 - 293
  • [38] A Review on Time-frequency, Time-scale and Scale-frequency domain signal analysis
    Samantaray, Leena
    Dash, Madhumita
    Panda, Rutuparna
    2005, Inst. of Electronics and Telecommunication Engineers (51)
  • [39] Improved Intrinsic Time-scale Decomposition Method and Its Simulation
    Lin, Jinshan
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 2045 - 2048
  • [40] Comparison of time-domain and time-scale data in bearing fault detection
    Ozcan, I. Halil
    Eren, Levent
    Ince, Turker
    Bilir, Bulent
    Askar, Murat
    2019 INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP) & 2019 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), 2019, : 143 - 146