Crack initiation in metallic glasses under nanoindentation

被引:39
|
作者
Yang, Yongjian [1 ,2 ]
Luo, Jian [1 ]
Huang, Liping [1 ,2 ]
Hu, Guangli [1 ]
Vargheese, K. Deenamma [1 ]
Shi, Yunfeng [1 ,2 ]
Mauro, John C. [1 ]
机构
[1] Corning Inc, Div Sci & Technol, Corning, NY 14831 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Nanoindentation; Metallic glass; Crack initiation; Cavitation; Molecular simulation; ELASTIC-PLASTIC INDENTATION; VICKERS INDENTATION; BRITTLE MATERIALS; SHEAR BANDS; SIMULATED NANOINDENTATION; STRUCTURAL TRANSFORMATION; CYLINDRICAL INDENTATION; DEFORMATION MORPHOLOGY; MOLECULAR-DYNAMICS; STRESS-FIELDS;
D O I
10.1016/j.actamat.2016.06.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulated nanoindentation tests on a model metallic glass reveal that the crack initiates inside a shear band via cavitation. The load-displacement curve was shown to be insensitive to the crack initiation but sensitive to subsequent crack propagation. The critical conditions for crack initiation were identified at both the macroscopic and microscopic levels. At the macroscopic level, the indenter geometry affects the overall critical load for crack initiation. Interestingly, the indentation volume at crack initiation appears to be a constant for different indenter geometries, based on which an analytical formula of the critical load as a function of the indenter geometry was derived. At the microscopic level, cavitation occurs once the normal stress perpendicular to the shear band exceeds a temperature-dependent critical cavitation stress. This critical cavitation stress was shown to reduce significantly upon shear deformation. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 50 条
  • [41] Crack initiation and crack propagation of fasteners under fatigue loading
    Berger, C
    Kaiser, B
    Kremer, U
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2002, 33 (09) : 507 - 510
  • [42] Nature of crack-tip plastic zone in metallic glasses
    Chen, Y.
    Dai, L. H.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2016, 77 : 54 - 74
  • [43] Fracture in metallic glasses: mechanics and mechanisms
    Narasimhan, R.
    Tandaiya, Parag
    Singh, I.
    Narayan, R. L.
    Ramamurty, U.
    INTERNATIONAL JOURNAL OF FRACTURE, 2015, 191 (1-2) : 53 - 75
  • [44] Nanoscratching of metallic glasses - An atomistic study
    Avila, Karina E.
    Kuechemann, Stefan
    Alhafeez, Iyad Alabd
    Urbassek, Herbert M.
    TRIBOLOGY INTERNATIONAL, 2019, 139 : 1 - 11
  • [45] Role of densification in deformation behaviors of model metallic glasses under 3-D nanoindentation studied in molecular dynamics simulation
    Liu, Haidong
    Shi, Yunfeng
    Youngman, Randall E.
    Huang, Liping
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 638
  • [46] Serrated flow behavior in a Pd-based bulk metallic glass under nanoindentation
    Liao, Guangkai
    Long, Zhilin
    Zhao, Mingshengzi
    Zhong, Min
    Liu, Wei
    Chai, Wei
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2017, 460 : 47 - 53
  • [47] Testing Effects on Shear Transformation Zone Size of Metallic Glassy Films Under Nanoindentation
    Ma, Yi
    Song, Yuxuan
    Huang, Xianwei
    Chen, Zhongli
    Zhang, Taihua
    MICROMACHINES, 2018, 9 (12):
  • [48] Inelastic deformation induced by cyclic nanoindentation in Zr-based bulk metallic glasses
    Tekaya, A.
    Labdi, S.
    Benameur, T.
    Jellad, A.
    Aubert, P.
    Maciejak, O.
    MATERIAUX & TECHNIQUES, 2011, 99 (04): : 471 - 481
  • [49] New insights into nanoindentation crack initiation in ion-exchanged sodium aluminosilicate glass
    Li, Xiaoyu
    Jiang, Liangbao
    Mohagheghian, Iman
    Dear, John P.
    Li, Lei
    Yan, Yue
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (07) : 2930 - 2940
  • [50] Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation
    Ke, H. B.
    Zhang, R.
    Sun, B. A.
    Zhang, P. G.
    Liu, T. W.
    Chen, P. H.
    Wu, M.
    Huang, H. G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 391 - 396