Crack initiation in metallic glasses under nanoindentation

被引:39
|
作者
Yang, Yongjian [1 ,2 ]
Luo, Jian [1 ]
Huang, Liping [1 ,2 ]
Hu, Guangli [1 ]
Vargheese, K. Deenamma [1 ]
Shi, Yunfeng [1 ,2 ]
Mauro, John C. [1 ]
机构
[1] Corning Inc, Div Sci & Technol, Corning, NY 14831 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Nanoindentation; Metallic glass; Crack initiation; Cavitation; Molecular simulation; ELASTIC-PLASTIC INDENTATION; VICKERS INDENTATION; BRITTLE MATERIALS; SHEAR BANDS; SIMULATED NANOINDENTATION; STRUCTURAL TRANSFORMATION; CYLINDRICAL INDENTATION; DEFORMATION MORPHOLOGY; MOLECULAR-DYNAMICS; STRESS-FIELDS;
D O I
10.1016/j.actamat.2016.06.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Simulated nanoindentation tests on a model metallic glass reveal that the crack initiates inside a shear band via cavitation. The load-displacement curve was shown to be insensitive to the crack initiation but sensitive to subsequent crack propagation. The critical conditions for crack initiation were identified at both the macroscopic and microscopic levels. At the macroscopic level, the indenter geometry affects the overall critical load for crack initiation. Interestingly, the indentation volume at crack initiation appears to be a constant for different indenter geometries, based on which an analytical formula of the critical load as a function of the indenter geometry was derived. At the microscopic level, cavitation occurs once the normal stress perpendicular to the shear band exceeds a temperature-dependent critical cavitation stress. This critical cavitation stress was shown to reduce significantly upon shear deformation. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 50 条
  • [31] Effect of nanoindentation experimental parameters on the estimation of the plastic events in metallic glasses employing various analysis methods
    Chu, Yuexin
    Zhou, Guishen
    Zhang, Yue
    Dong, Fuyu
    Yuan, Xiaoguang
    Wang, Binbin
    Luo, Liangshun
    Su, Yanqing
    Li, Weidong
    Liaw, Peter K.
    INTERMETALLICS, 2022, 151
  • [32] Crack Initiation under Cyclic Compression
    冯美斌
    陈新增
    何家文
    Journal of Materials Science & Technology, 1989, (05) : 328 - 332
  • [33] Testing effects on hardness of a Zr-based metallic glass under nanoindentation
    Li, M. C.
    Jiang, M. Q.
    Jiang, F.
    He, L.
    Sun, J.
    SCRIPTA MATERIALIA, 2017, 138 : 120 - 123
  • [34] Deformation behavior during nanoindentation in Ce-based bulk metallic glasses
    ZHANG Lingchen1
    2. State Key Laboratory of Nonlinear Mechanics (LNM)
    3. College of Physics and Electronic Information Science
    Chinese Science Bulletin, 2006, (13) : 1639 - 1643
  • [35] Effect of Mo addition on nanoindentation creep behavior of FeCoBSiNb bulk metallic glasses
    Wu, Xiaoyu
    Fu, Chunxin
    Li, Xue
    Li, Shengli
    INTERMETALLICS, 2023, 159
  • [36] Deformation behavior during nanoindentation in Ce-based bulk metallic glasses
    Zhang, Lingchen
    Xing, Dongmei
    Zhang, Taihua
    Wei, Bingchen
    Li, Weihuo
    Wang, Yuren
    CHINESE SCIENCE BULLETIN, 2006, 51 (13): : 1639 - 1643
  • [37] Applicability of cutting theory to nanocutting of metallic glasses: Atomistic simulation
    Avila, Karina E.
    Vardanyan, Vardan Hoviki
    Alhafez, Iyad Alabd
    Zimmermann, Marco
    Kirsch, Benjamin
    Urbassek, Herbert M.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 550 (550)
  • [38] Progressive shear band propagation in metallic glasses under compression
    Qu, R. T.
    Liu, Z. Q.
    Wang, G.
    Zhang, Z. F.
    ACTA MATERIALIA, 2015, 91 : 19 - 33
  • [39] Serrated Flow Model for Metallic Glasses under Compressive Loading
    Yousfi, M. A.
    Hajlaoui, K.
    Tourki, Z.
    Yavari, A. R.
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2013, 26 (05) : 503 - 508
  • [40] Hardness and Modulus of Cu-based Bulk Metallic Glasses via Nanoindentation
    Pi Jinhong
    Wang Zhangzhong
    He Xiancong
    Bai Yunqiang
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (02) : 479 - 484