A New Subspace Clustering Strategy for AI-Based Data Analysis in IoT System

被引:184
作者
Cui, Zhihua [1 ]
Jing, Xuechun [1 ]
Zhao, Peng [1 ]
Zhang, Wensheng [2 ]
Chen, Jinjun [3 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Comp Sci & Technol, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Intelligent Control & Management Co, Beijing 100190, Peoples R China
[3] Swinburne Univ Technol, Dept Comp Sci & Software Engn, Melbourne, Vic 3000, Australia
来源
IEEE INTERNET OF THINGS JOURNAL | 2021年 / 8卷 / 16期
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Sparse matrices; Internet of Things; Clustering algorithms; Correlation; Artificial intelligence; Servers; Hyperspectral imaging; Close neighbors; data analysis; hyperspectral images (HSIs); Internet of Things (IoT); subspace clustering; ALGORITHM; SEGMENTATION; INTERNET; ROBUST;
D O I
10.1109/JIOT.2021.3056578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet-of-Things (IoT) technology is widely used in various fields. In the Earth observation system, hyperspectral images (HSIs) are acquired by hyperspectral sensors and always transmitted to the cloud for analysis. In order to reduce cost and reply promptly, we deploy artificial intelligence (AI) models for data analysis on edge servers. Subspace clustering, the core of the AI model, is employed to analyze high-dimensional image data such as HSIs. However, most traditional subspace clustering algorithms construct a single model, which can be affected by noise more easily. It hardly balances the sparsity and connectivity of the representation coefficient matrix. Therefore, we proposed a postprocess strategy of subspace clustering for taking account of sparsity and connectivity. First, we define close neighbors as having more common neighbors and higher coefficients neighbors, where the close neighbors are selected according to the nondominated sorting algorithm. Second, the coefficients between the sample and close neighbors are reserved, incorrect, or useless connections are pruned. Then, the postprocess strategy can reserve the intrasubspace connection and prune the intersubspace connection. In experiments, we verified the universality and effectiveness of postprocessing strategies in the traditional image recognition field and IoT field, respectively. The experiment results demonstrate that the proposed strategy can process noise data in the IoT to improve clustering accuracy.
引用
收藏
页码:12540 / 12549
页数:10
相关论文
共 44 条
[1]  
Aagri D.K., 2018, 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), P1
[2]  
[Anonymous], 2014, Advances in Neural Information Processing Systems
[3]  
[Anonymous], 1971, 12 ANN S SWITCH AUT, DOI DOI 10.1109/SWAT.1971.10
[4]   Large Scale Spectral Clustering Via Landmark-Based Sparse Representation [J].
Cai, Deng ;
Chen, Xinlei .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) :1669-1680
[5]   An under-sampled software defect prediction method based on hybrid multi-objective cuckoo search [J].
Cai, Xingjuan ;
Niu, Yun ;
Geng, Shaojin ;
Zhang, Jiangjiang ;
Cui, Zhihua ;
Li, Jianwei ;
Chen, Jinjun .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (05)
[6]   Personalized Recommendation System Based on Collaborative Filtering for IoT Scenarios [J].
Cui, Zhihua ;
Xu, Xianghua ;
Xue, Fei ;
Cai, Xingjuan ;
Cao, Yang ;
Zhang, Wensheng ;
Chen, Jinjun .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2020, 13 (04) :685-695
[7]   A Hybrid BlockChain-Based Identity Authentication Scheme for Multi-WSN [J].
Cui, Zhihua ;
Xue, Fei ;
Zhang, Shiqiang ;
Cai, Xingjuan ;
Cao, Yang ;
Zhang, Wensheng ;
Chen, Jinjun .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2020, 13 (02) :241-251
[8]   Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things [J].
Cui, Zhihua ;
Cao, Yang ;
Cai, Xingjuan ;
Cai, Jianghui ;
Chen, Jinjun .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 132 :217-229
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]   Medical Internet of Things and Big Data in Healthcare [J].
Dimitrov, Dimiter V. .
HEALTHCARE INFORMATICS RESEARCH, 2016, 22 (03) :156-163