Symmetric Words in Dihedral Groups

被引:0
作者
Plonka, Ernest [1 ]
机构
[1] Silesian Tech Univ, Inst Math, PL-44100 Gliwice, Poland
关键词
symmetric words; dihedral groups; variety;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group and let w = w(x(1), x(2,) ..., x(n)) be a word in the absolutely free group F-n on free variables x(1), x(2), ..., x(n). The set S-(n) (G) of all words w such that the equality w(g(sigma 1), g(sigma 2), ..., g(sigma n)) = w(g(1), g(n), ..., g(n)) holds for all g(1), g(2), ..., g(n) is an element of G and all permutations sigma is an element of S-n is a subgroup of F-n, called the subgroup of n-symmetric words for G. In this paper, the groups S-(2) (D-p) and S-(3) (D-p) for dihedral groups D-p are determined, where p > 3 is a prime. In particular, it turns out that the groups S-(3) (D-p) are not abelian.
引用
收藏
页码:953 / 962
页数:10
相关论文
共 10 条
[1]   LINEARITY OF FREE NILPOTENT-BY-ABELIAN GROUPS [J].
GUPTA, CK ;
GUPTA, ND .
JOURNAL OF ALGEBRA, 1973, 24 (02) :293-302
[2]  
Gupta CK, 1999, ARCH MATH, V73, P327
[3]  
GUPTA CK, 2002, UKR MATH J, V54, P1020
[4]   Symmetric words in metabelian group [J].
Holubowski, W .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) :5161-5167
[5]  
Holubowski W, 2000, PUBL MATH-DEBRECEN, V57, P411
[6]  
HOLUBOWSKI W, 1999, LONDON MATH SOC LECT, V260, P363
[7]  
MACEDONSKA O, 1994, CONT MATH, V169, P431
[8]  
Magnus W., 2004, COMBINATORIAL GROUP
[9]  
Plonka E., 1977, FUND MATH, VXCVII, P95
[10]  
Plonka E, 2006, MATH SCAND, V99, P5