Sharp estimates for the eigenvalues of some differential equations

被引:35
作者
Karaa, S [1 ]
机构
[1] Univ Toulouse 3, Lab Math Ind & Phys, CNRS, UMR 5640, F-31062 Toulouse, France
关键词
eigenvalue; Lagrange multiplier; rearrangement; isoperimetric inequalities;
D O I
10.1137/S0036141096307849
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present optimal upper and lower bounds for the eigenvalues of the differential equations y " ? q(x)y + lambda rho(x)y = 0 and (q(x)y')' + lambda rho(x)y = 0 on a finite interval with Dirichlet boundary conditions when the coefficient functions q(x) and rho(x) are nonnegative and are subjected to some kind of additional constraints. One of the basic ideas used in our work consists in reducing the problem of maximizing lambda(q, rho) to an elementary problem of calculus of variations. This allows us to establish sufficient optimality conditions for our problems. We establish in the last part of this paper some comparison results for eigenvalues via symmetrization.
引用
收藏
页码:1279 / 1300
页数:22
相关论文
共 20 条
[1]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[2]  
BANKS DO, 1967, J MATH MECH, V16, P949
[5]   SHAPE OF STRONGEST COLUMN AND SOME RELATED EXTREMAL EIGENVALUE PROBLEMS [J].
BARNES, ER .
QUARTERLY OF APPLIED MATHEMATICS, 1977, 34 (04) :393-409
[6]  
BENNEWITZ C, 1992, INT S NUM M, V103, P257
[7]  
EGNELL H, 1987, ANN SCUOLA NORM-SCI, V14, P1
[8]  
EGOROV YV, 1994, CR ACAD SCI I-MATH, V319, P793
[9]  
Hestenes M.R., 1966, CALCULUS VARIATIONS
[10]  
KARAA S, 1995, CR ACAD SCI I-MATH, V321, P265