ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data

被引:85
作者
Gardeux, Vincent [1 ,2 ]
David, Fabrice P. A. [2 ,3 ]
Shajkofci, Adrian [1 ]
Schwalie, Petra C. [1 ,2 ]
Deplancke, Bart [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Bioengn, Sch Life Sci, CH-1015 Lausanne, Switzerland
[2] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Bioinformat & Biostat Core Facil, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
HETEROGENEITY;
D O I
10.1093/bioinformatics/btx337
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA-sequencing (scRNA-seq) allows whole transcriptome profiling of thousands of individual cells, enabling the molecular exploration of tissues at the cellular level. Such analytical capacity is of great interest to many research groups in the world, yet these groups often lack the expertise to handle complex scRNA-seq datasets. Results: We developed a fully integrated, web-based platform aimed at the complete analysis of scRNA-seq data post genome alignment: from the parsing, filtering and normalization of the input count data files, to the visual representation of the data, identification of cell clusters, differentially expressed genes (including cluster-specific marker genes), and functional gene set enrichment. This Automated Single-cell Analysis Pipeline (ASAP) combines a wide range of commonly used algorithms with sophisticated visualization tools. Compared with existing scRNA-seq analysis platforms, researchers (including those lacking computational expertise) are able to interact with the data in a straightforward fashion and in real time. Furthermore, given the overlap between scRNAseq and bulk RNA-seq analysis workflows, ASAP should conceptually be broadly applicable to any RNA-seq dataset. As a validation, we demonstrate how we can use ASAP to simply reproduce the results from a single-cell study of 91 mouse cells involving five distinct cell types.
引用
收藏
页码:3123 / 3125
页数:3
相关论文
共 13 条
[1]   The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update [J].
Afgan, Enis ;
Baker, Dannon ;
van den Beek, Marius ;
Blankenberg, Daniel ;
Bouvier, Dave ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Coraor, Nate ;
Eberhard, Carl ;
Gruening, Bjoern ;
Guerler, Aysam ;
Hillman-Jackson, Jennifer ;
Von Kuster, Greg ;
Rasche, Eric ;
Soranzo, Nicola ;
Turaga, Nitesh ;
Taylor, James ;
Nekrutenko, Anton ;
Goecks, Jeremy .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W3-W10
[2]   FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data [J].
DeTomaso, David ;
Yosef, Nir .
BMC BIOINFORMATICS, 2016, 17
[3]   SCell: integrated analysis of single-cell RNA-seq data [J].
Diaz, Aaron ;
Liu, Siyuan J. ;
Sandoval, Carmen ;
Pollen, Alex ;
Nowakowski, Tom J. ;
Lim, Daniel A. ;
Kriegstein, Arnold .
BIOINFORMATICS, 2016, 32 (14) :2219-2220
[4]   Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation [J].
Dueck, Hannah ;
Khaladkar, Mugdha ;
Kim, Tae Kyung ;
Spaethling, Jennifer M. ;
Francis, Chantal ;
Suresh, Sangita ;
Fisher, Stephen A. ;
Seale, Patrick ;
Beck, Sheryl G. ;
Bartfai, Tamas ;
Kuhn, Bernhard ;
Eberwine, James ;
Kim, Junhyong .
GENOME BIOLOGY, 2015, 16
[5]  
Fan J, 2016, NAT METHODS, V13, P241, DOI [10.1038/NMETH.3734, 10.1038/nmeth.3734]
[6]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[7]   SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis [J].
Guo, Minzhe ;
Wang, Hui ;
Potter, S. Steven ;
Whitsett, Jeffrey A. ;
Xu, Yan .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
[8]   Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq [J].
Julia, Miguel ;
Telenti, Amalio ;
Rausell, Antonio .
BIOINFORMATICS, 2015, 31 (20) :3377-3379
[9]  
Kiselev V.Y., 2016, BIORXIV
[10]   Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R [J].
McCarthy, Davis J. ;
Campbell, Kieran R. ;
Lun, Aaron T. L. ;
Wills, Quin F. .
BIOINFORMATICS, 2017, 33 (08) :1179-1186