Some estimates of norms of random matrices

被引:124
作者
Latala, R [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
关键词
random matrices; operator norm;
D O I
10.1090/S0002-9939-04-07800-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any random matrix (X-ij) with independent mean zero entries Eparallel to(X-ij) less than or equal to C (max(i) rootj Sigma(j) EXij2 + max(j) rootSigma(i) EXij2 + 4 rootSigma(ij) EXij4), where C is some universal constant.
引用
收藏
页码:1273 / 1282
页数:10
相关论文
共 50 条
  • [31] On the Law of Multiplication of Random Matrices
    Vasilchuk, Vladimir
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (01) : 1 - 36
  • [32] Rank deficiency of random matrices
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [33] The Polynomial Method for Random Matrices
    N. Raj Rao
    Alan Edelman
    [J]. Foundations of Computational Mathematics, 2008, 8 : 649 - 702
  • [34] On sparse random combinatorial matrices
    Aigner-Horev, Elad
    Person, Yury
    [J]. DISCRETE MATHEMATICS, 2022, 345 (11)
  • [35] Random matrices: The circular law
    Tao, Terence
    Vu, Van
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 261 - 307
  • [36] Invariant functionals for random matrices
    V. Yu. Protasov
    [J]. Functional Analysis and Its Applications, 2010, 44 : 230 - 233
  • [37] Invariant functionals for random matrices
    Protasov, V. Yu.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 230 - 233
  • [38] On the Law of Multiplication of Random Matrices
    Vladimir Vasilchuk
    [J]. Mathematical Physics, Analysis and Geometry, 2001, 4 : 1 - 36
  • [39] The Polynomial Method for Random Matrices
    Rao, N. Raj
    Edelman, Alan
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (06) : 649 - 702
  • [40] ON THE MATRIX RANGE OF RANDOM MATRICES
    Gerhold, Malte
    Shalit, Orr Moshe
    [J]. JOURNAL OF OPERATOR THEORY, 2021, 85 (02) : 527 - 545