Some estimates of norms of random matrices

被引:127
作者
Latala, R [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
关键词
random matrices; operator norm;
D O I
10.1090/S0002-9939-04-07800-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any random matrix (X-ij) with independent mean zero entries Eparallel to(X-ij) less than or equal to C (max(i) rootj Sigma(j) EXij2 + max(j) rootSigma(i) EXij2 + 4 rootSigma(ij) EXij4), where C is some universal constant.
引用
收藏
页码:1273 / 1282
页数:10
相关论文
共 8 条
[1]  
Chevet S, 1978, SERIES VARIABLES ALE, P15
[2]   A LIMIT-THEOREM FOR THE NORM OF RANDOM MATRICES [J].
GEMAN, S .
ANNALS OF PROBABILITY, 1980, 8 (02) :252-261
[3]  
Ledoux M., 2001, CONCENTRATION MEASUR
[4]   The expected norm of random matrices [J].
Seginer, Y .
COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (02) :149-166
[6]  
Szarek S. J., 1991, Journal of Complexity, V7, P131, DOI 10.1016/0885-064X(91)90002-F
[7]   CHARACTERISTIC VECTORS OF BORDERED MATRICES WITH INFINITE DIMENSIONS [J].
WIGNER, EP .
ANNALS OF MATHEMATICS, 1955, 62 (03) :548-564
[8]   ON THE LIMIT OF THE LARGEST EIGENVALUE OF THE LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
YIN, YQ ;
BAI, ZD ;
KRISHNAIAH, PR .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (04) :509-521