Classification using active polarimetry

被引:22
|
作者
Vaughn, Israel J. [1 ,2 ]
Hoover, Brian G. [2 ]
Tyo, J. Scott [1 ]
机构
[1] Univ Arizona, Adv Sensing Lab, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Adv Opt Technol, Albuquerque, NM 87123 USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING X | 2012年 / 8364卷
关键词
MUELLER MATRIX POLARIMETER; UNSUPERVISED CLASSIFICATION; TARGET DETECTION; SAR IMAGES; DISCRIMINATION; OPTIMIZATION; TUTORIAL;
D O I
10.1117/12.922623
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Active (Mueller matrix) remote sensing is an under-utilized technique for material discrimination and classification. A full Mueller matrix instrument returns more information than a passive (Stokes) polarimeter; Mueller polarimeters measure depolarization and other linear transformations that materials impart on incident Stokes vectors, which passive polarimeters cannot measure. This increase in information therefore allows for better classification of materials (in general). Ideally, material classification over the entire polarized BRDF is desired, but sets of Mueller matrices for different materials are generally not separable by a linear classifier over elevation and azimuthal target angles. We apply non-linear support vector machines (SVM) to classify materials over BRDF (all relevant angles) and show variations in receiver operator characteristic curves with scene composition and number of Mueller matrix channels in the observation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] On the equivalence of optimization metrics in Stokes polarimetry
    Foreman, Matthew R.
    Goudail, Francois
    OPTICAL ENGINEERING, 2019, 58 (08)
  • [32] Unsupervised classification using hidden Markov chain with unknown noise copulas and margins
    Derrode, Stephane
    Pieczynski, Wojciech
    SIGNAL PROCESSING, 2016, 128 : 8 - 17
  • [33] Waveguide Metacouplers for In-Plane Polarimetry
    Pors, Anders
    Bozhevolnyi, Sergey I.
    PHYSICAL REVIEW APPLIED, 2016, 5 (06):
  • [34] Influence of noise statistics on optimizing the distribution of integration time for degree of linear polarization polarimetry
    Li, Xiaobo
    Hu, Haofeng
    Wang, Hui
    Wu, Lan
    Liu, Tie-Gen
    OPTICAL ENGINEERING, 2018, 57 (06)
  • [35] Analysing the Elements of SAR Polarimetry Matrixes
    Bahrami, Ala
    Sahebi, Mahmod R.
    Ahmadi, Salman
    Dehghani, Maryam
    Zoej, Mohammad J. Valadan
    2009 EUROPEAN RADAR CONFERENCE (EURAD 2009), 2009, : 565 - 568
  • [36] Event-based progression detection strategies using scanning laser polarimetry images of the human retina
    Vermeer, K. A.
    Lo, B.
    Zhou, Q.
    Vos, F. M.
    Vossepoel, A. M.
    Lemij, H. G.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2011, 41 (09) : 857 - 864
  • [37] BatchRank: A Novel Batch Mode Active Learning Framework for Hierarchical Classification
    Chakraborty, Shayok
    Balasubramanian, Vineeth
    Sankar, Adepu Ravi
    Panchanathan, Sethuraman
    Ye, Jieping
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 99 - 108
  • [38] Classification of urban soils for forensic purposes using supervised self-organizing maps
    Idrizi, Hirijete
    Najdoski, Metodija
    Kuzmanovski, Igor
    JOURNAL OF CHEMOMETRICS, 2021, 35 (04)
  • [39] Aircraft classification using a microwave barrier
    Cristaldi, L.
    D'Antona, G.
    Faifer, M.
    Ferrero, A.
    Ottoboni, R.
    2006 IEEE INTERNATIONAL WORKSHOP ON MEASUREMENT SYSTEMS FOR HOMELAND SECURITY, CONTRABAND DETECTION & PERSONAL SAFETY, 2006, : 44 - +
  • [40] Runway Detection Using Unsupervised Classification
    Marapareddy, R.
    Pothuraju, A.
    2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 278 - 281