Classification using active polarimetry

被引:22
|
作者
Vaughn, Israel J. [1 ,2 ]
Hoover, Brian G. [2 ]
Tyo, J. Scott [1 ]
机构
[1] Univ Arizona, Adv Sensing Lab, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Adv Opt Technol, Albuquerque, NM 87123 USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING X | 2012年 / 8364卷
关键词
MUELLER MATRIX POLARIMETER; UNSUPERVISED CLASSIFICATION; TARGET DETECTION; SAR IMAGES; DISCRIMINATION; OPTIMIZATION; TUTORIAL;
D O I
10.1117/12.922623
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Active (Mueller matrix) remote sensing is an under-utilized technique for material discrimination and classification. A full Mueller matrix instrument returns more information than a passive (Stokes) polarimeter; Mueller polarimeters measure depolarization and other linear transformations that materials impart on incident Stokes vectors, which passive polarimeters cannot measure. This increase in information therefore allows for better classification of materials (in general). Ideally, material classification over the entire polarized BRDF is desired, but sets of Mueller matrices for different materials are generally not separable by a linear classifier over elevation and azimuthal target angles. We apply non-linear support vector machines (SVM) to classify materials over BRDF (all relevant angles) and show variations in receiver operator characteristic curves with scene composition and number of Mueller matrix channels in the observation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Adaptive feature selection for active trachoma image classification
    Zewudie, Mulugeta Shitie
    Xiong, Shengwu
    Yu, Xiaohan
    Wu, Xiaoyu
    Mehamed, Moges Ahmed
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [22] Deep learning approach for active classification of electrocardiogram signals
    Al Rahhal, M. M.
    Bazi, Yakoub
    AlHichri, Haikel
    Alajlan, Naif
    Melgani, Farid
    Yager, R. R.
    INFORMATION SCIENCES, 2016, 345 : 340 - 354
  • [23] Stokes imaging polarimetry using a twisted hybrid aligned nematic liquid crystal cell
    Honma, Michinori
    Kasai, Yuta
    Nose, Toshiaki
    APPLIED OPTICS, 2018, 57 (32) : 9649 - 9656
  • [24] Eigenvalue calibration methods for polarimetry
    Macias-Romero, C.
    Toeroek, P.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2012, 7
  • [25] Polarimetry with Disordered Photonic Structures
    Juhl, Michael
    Leosson, Kristjan
    ACS PHOTONICS, 2020, 7 (01): : 203 - 211
  • [26] Active Sonar Image Classification Using Deep Convolutional Neural Network Evolved by Robust Comprehensive Grey Wolf Optimizer
    Najibzadeh, Maryam
    Mahmoodzadeh, Azar
    Khishe, Mohammad
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 8689 - 8712
  • [27] Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification
    Maulik, Ujjwal
    Saha, Indrajit
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09): : 3503 - 3510
  • [28] A NOVEL LOCALLY ACTIVE LEARNING METHOD FOR SAR IMAGE CLASSIFICATION
    Wang, Tengchuan
    Li, Yuanxiang
    Xiong, Huilin
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [29] Iceberg Detection in Open Water and Sea Ice using C-Band Radar Polarimetry
    Akbari, Vahid
    Brekke, Camilla
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2298 - 2301
  • [30] Target-classification approach applied to active UXO sites
    Shubitidze, F.
    Fernandez, J. P.
    Shamatava, Irma
    Barrowes, B. E.
    O'Neill, K.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XVIII, 2013, 8709