Classification using active polarimetry

被引:22
作者
Vaughn, Israel J. [1 ,2 ]
Hoover, Brian G. [2 ]
Tyo, J. Scott [1 ]
机构
[1] Univ Arizona, Adv Sensing Lab, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Adv Opt Technol, Albuquerque, NM 87123 USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING X | 2012年 / 8364卷
关键词
MUELLER MATRIX POLARIMETER; UNSUPERVISED CLASSIFICATION; TARGET DETECTION; SAR IMAGES; DISCRIMINATION; OPTIMIZATION; TUTORIAL;
D O I
10.1117/12.922623
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Active (Mueller matrix) remote sensing is an under-utilized technique for material discrimination and classification. A full Mueller matrix instrument returns more information than a passive (Stokes) polarimeter; Mueller polarimeters measure depolarization and other linear transformations that materials impart on incident Stokes vectors, which passive polarimeters cannot measure. This increase in information therefore allows for better classification of materials (in general). Ideally, material classification over the entire polarized BRDF is desired, but sets of Mueller matrices for different materials are generally not separable by a linear classifier over elevation and azimuthal target angles. We apply non-linear support vector machines (SVM) to classify materials over BRDF (all relevant angles) and show variations in receiver operator characteristic curves with scene composition and number of Mueller matrix channels in the observation.
引用
收藏
页数:13
相关论文
共 27 条
[1]   Optimal discrimination of multiple regions with an active polarimetric imager [J].
Anna, Guillaume ;
Goudail, Francois ;
Dolfi, Daniel .
OPTICS EXPRESS, 2011, 19 (25) :25367-25378
[2]   Polarimetric target detection in the presence of spatially fluctuating Mueller matrices [J].
Anna, Guillaume ;
Goudail, Francois ;
Dolfi, Daniel .
OPTICS LETTERS, 2011, 36 (23) :4590-4592
[3]  
[Anonymous], 2008, P 25 INT C MACHINE L, DOI DOI 10.1145/1390156.1390170
[4]  
BARRETT HH, 2004, FDN IMAGE SCIENCE
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]  
Cloude S., 1997, GEOSCIENCE REMOTE SE, V35, P68
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/alpha-Wishart classifier [J].
Ferro-Famil, L ;
Pottier, E ;
Lee, JS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (11) :2332-2342
[9]   ERROR ANALYSIS OF A MUELLER MATRIX POLARIMETER [J].
GOLDSTEIN, DH ;
CHIPMAN, RA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (04) :693-700
[10]   When is polarimetric imaging preferable to intensity imaging for target detection? [J].
Goudail, Francois ;
Tyo, J. Scott .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (01) :46-53