Classification using active polarimetry

被引:22
|
作者
Vaughn, Israel J. [1 ,2 ]
Hoover, Brian G. [2 ]
Tyo, J. Scott [1 ]
机构
[1] Univ Arizona, Adv Sensing Lab, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Adv Opt Technol, Albuquerque, NM 87123 USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING X | 2012年 / 8364卷
关键词
MUELLER MATRIX POLARIMETER; UNSUPERVISED CLASSIFICATION; TARGET DETECTION; SAR IMAGES; DISCRIMINATION; OPTIMIZATION; TUTORIAL;
D O I
10.1117/12.922623
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Active (Mueller matrix) remote sensing is an under-utilized technique for material discrimination and classification. A full Mueller matrix instrument returns more information than a passive (Stokes) polarimeter; Mueller polarimeters measure depolarization and other linear transformations that materials impart on incident Stokes vectors, which passive polarimeters cannot measure. This increase in information therefore allows for better classification of materials (in general). Ideally, material classification over the entire polarized BRDF is desired, but sets of Mueller matrices for different materials are generally not separable by a linear classifier over elevation and azimuthal target angles. We apply non-linear support vector machines (SVM) to classify materials over BRDF (all relevant angles) and show variations in receiver operator characteristic curves with scene composition and number of Mueller matrix channels in the observation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fully tunable active polarization imager for contrast enhancement and partial polarimetry
    Anna, Guillaume
    Sauer, Herve
    Goudail, Francois
    Dolfi, Daniel
    APPLIED OPTICS, 2012, 51 (21) : 5302 - 5309
  • [2] Alignment and temperature effects in liquid-crystal-based active polarimetry
    Gladish, James C.
    Duncan, Donald D.
    APPLIED OPTICS, 2014, 53 (18) : 3982 - 3992
  • [3] Enhancing land cover classification for multispectral images using hybrid polarimetry SAR data
    Iyyappan, Muthukumarasamy
    Ramakrishnan, Sunnambukulam Shanmugam
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (17) : 6718 - 6754
  • [4] Multi-temporal polarimetry in land-cover classification
    Wozniak, Edyta
    Kofman, Wlodek
    Lewinski, Stanislaw
    Wajer, Pawel
    Rybicki, Marcin
    Aleksandrowicz, Sebastian
    Wlodarkiewicz, Adam
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 8182 - 8199
  • [5] Generalized channeled polarimetry
    Alenin, Andrey S.
    Tyo, J. Scott
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (05) : 1013 - 1022
  • [6] Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix
    Savenkov, S.
    Muttiah, R.
    Oberemok, E.
    Klimov, A.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (11) : 1796 - 1802
  • [7] Multisource classification of SAR images with the use of segmentation, polarimetry, texture and multitemporal data
    Sery, F
    DucrotGambart, D
    Lopes, A
    Fjortoft, R
    CuberoCastan, E
    Marthon, P
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING III, 1996, 2955 : 186 - 197
  • [8] Mueller matrix polarimetry using full Poincare beams
    Carlos Suarez-Bermejo, Juan
    Gonzalez de Sande, Juan Carlos
    Santarsiero, Massimo
    Piquero, Gemma
    OPTICS AND LASERS IN ENGINEERING, 2019, 122 : 134 - 141
  • [9] Aircraft skin defect localization using imaging polarimetry
    Luo, David A.
    Barraza, Enrique Tomas
    Kudenov, Michael W.
    OPTICAL ENGINEERING, 2018, 57 (08)
  • [10] Channeled partial Mueller matrix polarimetry
    Alenin, Andrey S.
    Tyo, J. Scott
    POLARIZATION SCIENCE AND REMOTE SENSING VII, 2015, 9613