Existence of multiple solutions to a discrete boundary value problem with mixed periodic boundary conditions

被引:2
作者
Howard, Kimberly [1 ]
Wang, Long [1 ]
Wang, Min [1 ]
机构
[1] Kennesaw State Univ, Dept Math, Marietta, GA 30060 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2020年 / 13卷 / 04期
关键词
discrete boundary value problem; mixed periodic boundary conditions; variational methods;
D O I
10.2140/involve.2020.13.673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A second-order discrete boundary value problem with mixed periodic boundary conditions is studied. Sufficient conditions on the multiplicity of solutions in a weak sense are obtained by using the critical point theory. An example is given to demonstrate the applications of our results as well.
引用
收藏
页码:673 / 681
页数:9
相关论文
共 18 条
[1]  
Davis J. M., 2016, INT J PURE APPL MATH, V109, P67
[2]   The forward and inverse problems for a fractional boundary value problem [J].
Feng, Yaqin ;
Graef, John R. ;
Kong, Lingju ;
Wang, Min .
APPLICABLE ANALYSIS, 2018, 97 (14) :2474-2484
[3]  
Garcia A. E., 2019, INVOLVE, V12, P171
[4]  
GRAEF J. R., 2013, Adv. Dyn. Syst. Appl., V8, P203
[5]   Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Haiyan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (05) :1185-1197
[6]   Existence of solutions to a discrete fourth order boundary value problem [J].
Graef, John R. ;
Heidarkhani, Shapour ;
Kong, Lingju ;
Wang, Min .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (06) :849-858
[7]   ON A FRACTIONAL BOUNDARY VALUE PROBLEM WITH A PERTURBATION TERM [J].
Graef, John R. ;
Kong, Lingju ;
Kong, Qingkai ;
Wang, Min .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (01) :57-66
[8]   Existence of positive solutions for a system of semipositone coupled discrete boundary value problems [J].
Henderson, Johnny ;
Luca, Rodica .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (04) :516-541
[9]   Positive solutions for a system of coupled fractional boundary value problems [J].
Henderson, Johnny ;
Luca, Rodica .
LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (01) :15-32
[10]  
Kong L., MULTIPLE PARTI UNPUB