Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks

被引:23
|
作者
Hinze, Michael [2 ]
Kunkel, Martin [1 ]
机构
[1] Univ Bundeswehr Munchen, Fak Luft & Raumfahrttech, D-85577 Neubiberg, Germany
[2] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2012年 / 92卷 / 02期
关键词
Model order reduction; reduced basis methods; parametrized dynamical systems; mixed finite element methods; drift-diffusion equations; integrated circuits; DISCRETIZATION;
D O I
10.1002/zamm.201100004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider integrated circuits with semiconductors modeled by modified nodal analysis and drift-diffusion equations. The drift-diffusion equations are discretized in space using mixed finite element method. This discretization yields a high dimensional differential-algebraic equation. We show how proper orthogonal decomposition (POD) can be used to reduce the dimension of the model. We compare reduced and fine models and give numerical results for a basic network with one diode. Furthermore we discuss an adaptive approach to construct POD models which are valid over certain parameter ranges.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 25 条
  • [21] Model order reduction for solid-phase diffusion in physics-based lithium ion cell models
    Hu, Xiao
    Stanton, Scott
    Cai, Long
    White, Ralph E.
    JOURNAL OF POWER SOURCES, 2012, 218 : 212 - 220
  • [22] A simple and flexible model order reduction method for FFT-based homogenization problems using a sparse sampling technique
    Kochman, Julian
    Manjunatha, Kiran
    Gierden, Christian
    Wulfinghoff, Stephan
    Svendsen, Bob
    Reesea, Stefanie
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 347 : 622 - 638
  • [23] A data-based stability-preserving model order reduction method for hyperbolic partial differential equations
    Abbasi, Mohammad Hossein
    Iapichino, Laura
    Schilders, Wil
    van de Wouw, Nathan
    NONLINEAR DYNAMICS, 2022, 107 (04) : 3729 - 3748
  • [24] A data-based stability-preserving model order reduction method for hyperbolic partial differential equations
    Mohammad Hossein Abbasi
    Laura Iapichino
    Wil Schilders
    Nathan van de Wouw
    Nonlinear Dynamics, 2022, 107 : 3729 - 3748
  • [25] Macro-micro decomposition for consistent and conservative model order reduction of hyperbolic shallow water moment equations: a study using POD-Galerkin and dynamical low-rank approximation
    Koellermeier, Julian
    Krah, Philipp
    Kusch, Jonas
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)