An invariant for the 3D Euler equations

被引:1
|
作者
He, X [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
invariants; 3D Euler equation; Navier-Stokes turbulence;
D O I
10.1016/S0893-9659(99)00034-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for an ideal incompressible fluid in the presence of a conservative body force, there exists a time invariant, a vector A = (A(1),A(2),A(3)) It is discussed that the invariance of At is probably linked to geometrical structures of Navier-Stokes turbulence. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [41] Invariant measures of the 2D Euler and Vlasov equations
    Bouchet, Freddy
    Corvellec, Marianne
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [42] Development of high vorticity structures in incompressible 3D Euler equations
    Agafontsev, D. S.
    Kuznetsov, E. A.
    Mailybaev, A. A.
    PHYSICS OF FLUIDS, 2015, 27 (08)
  • [43] Mean Field Limit of Interacting Filaments for 3D Euler Equations
    Hakima Bessaih
    Michele Coghi
    Franco Flandoli
    Journal of Statistical Physics, 2019, 174 : 562 - 578
  • [44] Explicit Solutions to the 3D Incompressible Euler Equations in Lagrangian Formulation
    Tomi Saleva
    Jukka Tuomela
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [45] Explicit Solutions to the 3D Incompressible Euler Equations in Lagrangian Formulation
    Saleva, Tomi
    Tuomela, Jukka
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (04)
  • [46] SINGULARITY FORMATION FOR COMPLEX SOLUTIONS OF THE 3D INCOMPRESSIBLE EULER EQUATIONS
    CAFLISCH, RE
    PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) : 1 - 18
  • [47] A Staggered Scheme for the Compressible Euler Equations on General 3D Meshes
    Brunel, Aubin
    Herbin, Raphaele
    Latche, Jean-Claude
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [48] Calculation of complex singular solutions to the 3D incompressible Euler equations
    Siegel, M.
    Caflisch, R. E.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (23-24) : 2368 - 2379
  • [49] Viscous approximation and weak solutions of the 3D axisymmetric Euler equations
    Jiu, Quansen
    Wu, Jiahong
    Yang, Wanrong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (03) : 548 - 558
  • [50] On the Self-Similar Solutions of the 3D Euler and the Related Equations
    Dongho Chae
    Communications in Mathematical Physics, 2011, 305 : 333 - 349