Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure

被引:60
|
作者
Diez-Ramirez, J. [1 ]
Diaz, J. A. [1 ]
Sanchez, P. [1 ]
Dorado, F. [1 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim, Dept Ingn Quim, E-13071 Ciudad Real, Spain
关键词
CO2; hydrogenation; Methanol synthesis; Trimetallic catalysts; Pd-Cu-Zn; Silicon carbide; Atmospheric pressure; CARBON-DIOXIDE HYDROGENATION; SIC CATALYSTS; PD/ZNO; REDUCTION; ALLOYS; METAL; GAS; ZN; AU; PERFORMANCE;
D O I
10.1016/j.jcou.2017.09.012
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
PdCuZn/SiC catalysts were synthesized with different Pd:Cu:Zn molar compositions and tested in the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Trimetallic catalysts were compared with the corresponding bimetallic ones (PdZn/SiC, CuZn/SiC and PdCu/SiC). Catalysts were characterized by N-2 adsorption/desorption, temperature-programed reduction (TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The Pd-0 active sites were related to carbon monoxide formation via reverse water-gas-shift (RWGS), whereas the PdZn alloys catalyzed methanol synthesis. The role of copper in trimetallic catalysts was to inhibit the deposition of metallic palladium by forming a PdCu alloy that proved to be less active to CO formation. Moreover, the active sites of trimetallic catalysts were smaller and better dispersed than those of the corresponding bimetallic ones, probably due to a synergistic effect between the three metals. The catalyst with a molar composition of 37.5:12.5:50 Pd:Cu:Zn (mol.%) was selected as the most active for the methanol synthesis, as this sample showed the highest activity and selectivity to methanol. The role of copper was also shown to be crucial in trimetallic catalyst by comparing the best example with an equivalent bimetallic PdZn/SiC with a Pd: Zn molar ratio of 37.5:62.5.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条
  • [31] Inverse ZnO/Cu catalysts for methanol synthesis from CO2 hydrogenation
    Wang, Guihui
    Luo, Fei
    Lin, Lili
    Zhao, Fuzhen
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 132 (01) : 155 - 170
  • [32] Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst
    An Xin
    Zuo Yizan
    Zhang Qiang
    Wang Jinfu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2009, 17 (01) : 88 - 94
  • [33] Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol
    Gao, Peng
    Li, Feng
    Zhang, Lina
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Zhong, Liangshu
    Sun, Yuhan
    JOURNAL OF CO2 UTILIZATION, 2013, 2 : 16 - 23
  • [34] Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst
    Li, Shaozhong
    Guo, Limin
    Ishihara, Tatsumi
    CATALYSIS TODAY, 2020, 339 : 352 - 361
  • [35] Hydrogenation of CO2 to methanol over Cu/ZnCr catalyst
    Xiong, Shuhao
    Lian, Yun
    Xie, Hong
    Liu, Bing
    FUEL, 2019, 256
  • [36] Methanol Synthesis from CO2 Under Atmospheric Pressure over Supported Pd Catalysts
    Nobuhiro Iwasa
    Hiroshi Suzuki
    Masao Terashita
    Masahiko Arai
    Nobutsune Takezawa
    Catalysis Letters, 2004, 96 : 75 - 78
  • [37] Tailoring of Hydrotalcite-Derived Cu-Based Catalysts for CO2 Hydrogenation to Methanol
    Frusteri, Leone
    Cannilla, Catia
    Todaro, Serena
    Frusteri, Francesco
    Bonura, Giuseppe
    CATALYSTS, 2019, 9 (12)
  • [38] Photo-enhanced CO2 hydrogenation by plasmonic Cu/ZnO at atmospheric pressure
    He, Xiangyun
    Liu, Mu
    Liang, Zhong
    Wang, Zeyan
    Wang, Peng
    Liu, Yuanyuan
    Cheng, Hefeng
    Dai, Ying
    Zheng, Zhaoke
    Huang, Baibiao
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 298
  • [39] CuPd bimetallic catalyst with high Cu/Pd ratio and its application in CO2 hydrogenation
    Qiu, Rui
    Ding, Ziluo
    Xu, Yamei
    Yang, Qiuchen
    Sun, Kening
    Hou, Ruijun
    APPLIED SURFACE SCIENCE, 2021, 544
  • [40] CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases
    Witoon, Thongthai
    Chalorngtham, Jiraporn
    Dumrongbunditkul, Porntipar
    Chareonpanich, Metta
    Limtrakul, Jumras
    CHEMICAL ENGINEERING JOURNAL, 2016, 293 : 327 - 336