High-accuracy instrumental variable identification of continuous-time autoregressive processes from irregularly, sampled noisy data

被引:11
|
作者
Mossberg, Magnus [1 ]
机构
[1] Karlstad Univ, Dept Elect Engn, SE-65188 Karlstad, Sweden
关键词
autoregressive process; continuous time; instrumental variables identification; irregular sample;
D O I
10.1109/TSP.2008.925578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A computationally efficient estimator of continuous-time autoregressive (AR) process parameters from irregularly sampled data affected by discrete-time white measurement noise is presented. It is described how an instrumental variable approach can be used for estimating the AR process parameters with high accuracy. Possible estimators of the incremental variance of the driving continuous-time white noise source and of the variance of the discrete-time white measurement noise are also discussed.
引用
收藏
页码:4087 / 4091
页数:5
相关论文
共 50 条
  • [41] DENSITY-ESTIMATION FOR CONTINUOUS-TIME PROCESSES FROM NOISY OBSERVATIONS
    BLANKE, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 623 - 626
  • [42] Refined Instrumental Variable Methods for Identification of Hammerstein Continuous-time Box Jenkins Models
    Laurain, V.
    Gilson, M.
    Garnier, H.
    Young, P. C.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1386 - 1391
  • [43] Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification
    Ni, Boyi
    Gilson, Marion
    Garnier, Hugues
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (09): : 1276 - 1286
  • [44] Continuous-Time Model Identification Using Non-Uniformly Sampled Data
    Johansson, Rolf
    Cescon, Marzia
    Stahl, Fredrik
    AFRICON, 2013, 2013, : 688 - 693
  • [45] Parameter and Time-delay Identification of Continuous-time Models from Non-uniformly Sampled Data
    Chen, Fengwei
    Garnier, Hugues
    Gilson, Marion
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1792 - 1797
  • [46] Multivariate regression estimation of continuous-time processes from sampled data: Local polynomial fitting approach
    Masry, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 1939 - 1953
  • [47] Identification of Markov Jump Autoregressive Processes from Large Noisy Data Sets
    Hojjatinia, Sarah
    Lagoa, Constantino
    IFAC PAPERSONLINE, 2020, 53 (02): : 1077 - 1083
  • [48] From Continuous-Time Design to Sampled-Data Design of Observers
    Karafyllis, Iasson
    Kravaris, Costas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (09) : 2169 - 2174
  • [49] Closed-loop Identification of Continuous-time Systems from Non-uniformly Sampled Data
    Chen, Fengwei
    Gilson, Marion
    Agueero, Juan Carlos
    Garnier, Hugues
    Schorsch, Julien
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 19 - 24
  • [50] Identification of Continuous-Time Systems with Multiple Unknown Time Delays Using an Output Error Method from Sampled Data
    Ghoul, Y.
    Ibn Taarit, K.
    Ksouri, M.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (03) : 1044 - 1061