High-accuracy instrumental variable identification of continuous-time autoregressive processes from irregularly, sampled noisy data

被引:11
|
作者
Mossberg, Magnus [1 ]
机构
[1] Karlstad Univ, Dept Elect Engn, SE-65188 Karlstad, Sweden
关键词
autoregressive process; continuous time; instrumental variables identification; irregular sample;
D O I
10.1109/TSP.2008.925578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A computationally efficient estimator of continuous-time autoregressive (AR) process parameters from irregularly sampled data affected by discrete-time white measurement noise is presented. It is described how an instrumental variable approach can be used for estimating the AR process parameters with high accuracy. Possible estimators of the incremental variance of the driving continuous-time white noise source and of the variance of the discrete-time white measurement noise are also discussed.
引用
收藏
页码:4087 / 4091
页数:5
相关论文
共 50 条
  • [21] IDENTIFICATION OF LINEAR AND NONLINEAR CONTINUOUS-TIME MODELS FROM SAMPLED-DATA SETS
    TSANG, KM
    BILLINGS, SA
    JOURNAL OF SYSTEMS ENGINEERING, 1995, 5 (04): : 249 - 267
  • [22] Continuous-time model identification from sampled data: implementation issues and performance evaluation
    Garnier, H
    Mensler, M
    Richard, A
    INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (13) : 1337 - 1357
  • [23] IDENTIFICATION OF LINEARIZED CONTINUOUS-TIME MODELS OF MECHANICAL SYSTEMS FROM SAMPLED-DATA
    WANG, QG
    COMPUTERS IN INDUSTRY, 1993, 23 (03) : 235 - 241
  • [24] An approach to continuous-time model identification from non-uniformly sampled data
    Huselstein, E
    Garnier, H
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 622 - 623
  • [25] Subspace identification for continuous-time errors-in-variables model from sampled data
    Wu, Ping
    Yang, Chun-jie
    Song, Zhi-huan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (08): : 1177 - 1186
  • [26] Subspace identification for continuous-time errors-in-variables model from sampled data
    Ping Wu
    Chun-jie Yang
    Zhi-huan Song
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 1177 - 1186
  • [27] Subspace identification for continuous-time errors-in-variables model from sampled data
    Ping WUChunjie YANGZhihuan SONGState Key Lab of Industrial Control TechnologyZhejiang UniversityHangzhou China
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (08) : 1177 - 1186
  • [28] Frequency-domain identification of continuous-time ARMA models from sampled data
    Gillberg, Jonas
    Ljung, Lennart
    AUTOMATICA, 2009, 45 (06) : 1371 - 1378
  • [29] A Continuous-Time Linear System Identification Method for Slowly Sampled Data
    Marelli, Damian
    Fu, Minyue
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2521 - 2533
  • [30] Maximum Likelihood Identification of a Continuous-Time Oscillator Utilizing Sampled Data
    Gonzalez, Karen
    Coronel, Maria
    Carvajal, Rodrigo
    Escarate, Pedro
    Aguero, Juan C.
    IFAC PAPERSONLINE, 2018, 51 (15): : 712 - 717