A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations

被引:11
|
作者
Simoes, Agnes Nascimento [1 ]
Carvalho, Danilo Jose [1 ]
Morita, Eugenio de Souza [1 ]
Moretti, Haroldo Luiz [2 ]
Vendrameto, Helen Velozo [3 ]
Fu, Li [4 ]
Torres, Floriano [5 ]
de Souza, Andre Nunes [2 ]
Bizzo, Waldir Antonio [1 ]
Mazon, Talita [6 ]
机构
[1] UNICAMP Univ Campinas, Sch Mech Engn, BR-13083970 Campinas, Brazil
[2] UNESP Univ Estadual Paulista, Dept Elect Engn, BR-14801902 Sao Paulo, Brazil
[3] CPFL Paulista, Gestao Ativos, BR-13087397 Campinas, Brazil
[4] CPFL Energia, Engn, BR-13087397 Campinas, Brazil
[5] CPFL Geracao, HOG, BR-13087397 Campinas, Brazil
[6] Ctr Tecnol Informacao Renato Archer, Div Micro & NanoMat, BR-13069901 Campinas, Brazil
基金
巴西圣保罗研究基金会;
关键词
energy harvesting; triboelectric nanogenerator; ZnO nanorods; graphene oxide; PDMS; transformer; FRICTION LAYER; GRAPHENE; DENSITY; SENSOR; COST;
D O I
10.3390/machines10030215
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transformers can produce gases dissolved in oil that can cause damage to their structures, and preventing failures caused by these gases is a goal to be reached. There is a demand for wireless sensors to monitor those gases. Alongside its development, there is a growing interest in new energy sources enabling these technologies. Triboelectric nanogenerators can gather energy from the environment, such as mechanical energy from vibrations, and convert it into electricity from the contact of two dielectric materials. In this work, the authors propose the study of a low-cost and straightforward triboelectric nanogenerator (TENG) based on ZnO nanorods as a positive dielectric material, with PDMS:GO composites at different concentrations as the negative dielectric material. All the studies were carried out in a wide frequency range varying from 45 to 250 Hz. Additionally, an analysis of the addition of a steel spring into the TENG to improve the device's generating output is shown. A power density of 246 mV M-2 and 4 V of the output voltage was obtained using a PDMS:GO 4% (w/w) composite and a steel spring. A correlation between the "mass-spring" system and the better performance of the triboelectric device is presented. Further, vibration frequencies in several external points of the transformer walls and the device's performance in these frequencies are shown, and the results gathered from this data are discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
    Yun, Byung Kil
    Kim, Hyun Soo
    Ko, Young Joon
    Murillo, Gonzalo
    Jung, Jong Hoon
    NANO ENERGY, 2017, 36 : 233 - 240
  • [22] An Optimization Approach for Contact-Separation Triboelectric Nanogenerator Harvesting Bridge Vibrations
    He Zhang
    ShuAn Mai
    JinXin Wu
    ZhiCheng Zhang
    BingSen Xuan
    Ying Song
    Journal of Vibration Engineering & Technologies, 2024, 12 : 4899 - 4912
  • [23] An Optimization Approach for Contact-Separation Triboelectric Nanogenerator Harvesting Bridge Vibrations
    Zhang, He
    Mai, Shuan
    Wu, Jinxin
    Zhang, Zhicheng
    Xuan, Bingsen
    Song, Ying
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 4899 - 4912
  • [24] Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting
    Chen, Chaoyu
    Guo, Hengyu
    Chen, Lijun
    Wang, Yi-Cheng
    Pu, Xianjie
    Yu, Weidong
    Wang, Fumei
    Du, Zhaoqun
    Wang, Zhong Lin
    ACS NANO, 2020, 14 (04) : 4585 - 4594
  • [25] SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR
    Tan, Dongguo
    Chi, Shimin
    Ou, Xu
    Zhou, Jiaxi
    Wang, Kai
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2024, 56 (09): : 2495 - 2510
  • [26] Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy
    Wang, Yuqi
    Yu, Xin
    Yin, Mengfei
    Wang, Jianlong
    Gao, Qi
    Yu, Yang
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 82
  • [27] Liquid-Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy
    Zhang, Ruotong
    Lin, Haisong
    Pan, Yi
    Li, Chang
    Yang, Zhenyu
    Tian, Jingxuan
    Shum, Ho Cheung
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
  • [28] Triboelectric-thermoelectric hybrid nanogenerator for harvesting frictional energy
    Kim, Min-Ki
    Kim, Myoung-Soo
    Jo, Sung-Eun
    Kim, Yong-Jun
    SMART MATERIALS AND STRUCTURES, 2016, 25 (12)
  • [29] Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ouyang, Ri
    Miao, Juan
    Wu, Tao
    Chen, Jiajia
    Sun, Chengfu
    Chu, Jing
    Chen, Dingming
    Li, Xin
    Xue, Hao
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (09):
  • [30] Multifunctional triboelectric nanogenerator for wind energy harvesting and mist catching
    Zhang, Fei
    Zheng, Lin
    Li, Hao
    Yu, Gao
    Wang, Shengbo
    Xing, Fangjing
    Wang, Zhong Lin
    Chen, Baodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 488