Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model

被引:1
|
作者
Wang, Xiaoli [1 ]
Chang, Yu [2 ]
Xu, Dashun [3 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 06期
关键词
Belousov-Zhabotinsky reaction; frequency domain; fourth-order harmonic balance; DETERMINISTIC CHAOS; CHEMICAL-REACTION; SYNCHRONIZATION; OSCILLATIONS; MECHANISM;
D O I
10.1142/S0218127415500935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the bifurcation phenomena in a Belousov-Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Coupling of Two Microbeads Exhibiting Different Features of Oscillations in the Belousov-Zhabotinsky Reaction
    Kuze, Masakazu
    Hiranishi, Yuri
    Okamoto, Yasunao
    Shioi, Akihisa
    Nakata, Satoshi
    CHEMISTRY LETTERS, 2019, 48 (08) : 847 - 850
  • [32] Chemistry and Mathematics of the Belousov-Zhabotinsky Reaction in a School Laboratory
    Barzykina, Irina
    JOURNAL OF CHEMICAL EDUCATION, 2020, 97 (07) : 1895 - 1902
  • [33] Study of the hyperchaos and their synchronization in the Belousov-Zhabotinsky chemical reaction
    Li, YN
    Chen, L
    Cai, ZS
    Zhao, XZ
    ACTA CHIMICA SINICA, 2002, 60 (07) : 1173 - 1178
  • [34] DEPTH DEPENDENCE OF THE BIG WAVE IN BELOUSOV-ZHABOTINSKY REACTION
    INOMOTO, O
    ARIYOSHI, T
    INANAGA, S
    KAI, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (10) : 3602 - 3605
  • [35] High-Frequency Oscillations in the Belousov-Zhabotinsky Reaction
    Bansagi, Tamas, Jr.
    Leda, Marcin
    Toiya, Masahiro
    Zhabotinsky, Anatol M.
    Epstein, Irving R.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (19) : 5644 - 5648
  • [36] Oscillations of EPR Signals Accompanying Belousov-Zhabotinsky Reaction
    Morgunov, Roman
    Tanimoto, Yoshifumi
    MAGNETOCHEMISTRY, 2021, 7 (01) : 1 - 7
  • [37] Belousov-Zhabotinsky reaction: an open-source approach
    Misra, Ishaan
    Ramanathan, V
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2022, 88 (03): : 243 - 249
  • [38] Chirality observed in a driven ruthenium-catalyzed Belousov-Zhabotinsky reaction model
    Gallas, Jason A. C.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (45) : 25720 - 25726
  • [39] Chaos Synchronization of Two Gyorgyi-Field Systems for the Belousov-Zhabotinsky Chemical Reaction
    Oancea, Andrei Victor
    Bodale, Ilie
    MATHEMATICS, 2022, 10 (21)
  • [40] Frequency distribution of chemical oscillations in the closed Belousov-Zhabotinsky reaction
    Darowicki, K
    Felisiak, W
    POLISH JOURNAL OF CHEMISTRY, 2004, 78 (04) : 575 - 582