We investigate the bifurcation phenomena in a Belousov-Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.
机构:
Inst Problems Chem Phys, Chernogolovka 142432, Russia
IM Sechenov First Moscow State Med Univ, Dept Med & Biol Phys, Moscow 119991, RussiaInst Problems Chem Phys, Chernogolovka 142432, Russia
Morgunov, Roman
Tanimoto, Yoshifumi
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-3-1 Kagamiyama, Higashihiroshima 7398511, JapanInst Problems Chem Phys, Chernogolovka 142432, Russia
机构:
Petru Poni Inst Macromol Chem, 41A Grigore Ghica Voda Alley, Iasi 700487, RomaniaPetru Poni Inst Macromol Chem, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
Oancea, Andrei Victor
Bodale, Ilie
论文数: 0引用数: 0
h-index: 0
机构:
Ion Ionescu de la Brad Iasi Univ Life Sci, Dept Sci, 3 M Sadoveanu Alley, Iasi 700440, RomaniaPetru Poni Inst Macromol Chem, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania