Bifurcation Analysis of a Belousov-Zhabotinsky Reaction Model

被引:1
|
作者
Wang, Xiaoli [1 ]
Chang, Yu [2 ]
Xu, Dashun [3 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 06期
关键词
Belousov-Zhabotinsky reaction; frequency domain; fourth-order harmonic balance; DETERMINISTIC CHAOS; CHEMICAL-REACTION; SYNCHRONIZATION; OSCILLATIONS; MECHANISM;
D O I
10.1142/S0218127415500935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the bifurcation phenomena in a Belousov-Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Adapted numerical modelling of the Belousov-Zhabotinsky reaction
    D'Ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    Rossi, Federico
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (10) : 2876 - 2897
  • [2] Belousov-Zhabotinsky reaction in liquid marbles
    Fullarton, Claire
    Draper, Thomas C.
    Phillips, Neil
    de Lacy Costello, Ben P. J.
    Adamatzky, Andrew
    JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (01):
  • [3] Traveling waves for a model of the Belousov-Zhabotinsky reaction
    Trofimchuk, Elena
    Pinto, Manuel
    Trofimchuk, Sergei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3690 - 3714
  • [4] A mathematical model for bifurcations in a Belousov-Zhabotinsky reaction
    Chen, G
    PHYSICA D, 2000, 145 (3-4): : 309 - 329
  • [5] Chaos in the Belousov-Zhabotinsky reaction
    Field, Richard J.
    MODERN PHYSICS LETTERS B, 2015, 29 (34):
  • [6] The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction
    Riedl, Michael
    Sixt, Michael
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [7] Simulation of Few Bifurcation Phase Diagrams of Belousov-Zhabotinsky Reaction with Eleven Variable Chaotic Model in CSTR
    Swathi, B.
    Kulkarni, V. R.
    E-JOURNAL OF CHEMISTRY, 2009, 6 (02) : 481 - 488
  • [8] KCC Theory of the Oregonator Model for Belousov-Zhabotinsky Reaction
    Gupta, M. K.
    Sahu, Abha
    Yadav, C. K.
    Goswami, Anjali
    Swarup, Chetan
    AXIOMS, 2023, 12 (12)
  • [9] Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction
    Pullela, Srinivasa R.
    Cristancho, Diego
    He, Peng
    Luo, Dawei
    Hall, Kenneth R.
    Cheng, Zhengdong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (21) : 4236 - 4243
  • [10] Empirically developed model of the stirring-controlled Belousov-Zhabotinsky reaction
    Karimov, Artur
    Kopets, Ekaterina
    Karimov, Timur
    Almjasheva, Oksana
    Arlyapov, Viacheslav
    Butusov, Denis
    CHAOS SOLITONS & FRACTALS, 2023, 176