Study of symmetry breaking in a relativistic Bose gas using the contraction algorithm
被引:16
作者:
Alexandru, Andrei
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Phys, Washington, DC 20052 USA
Univ Maryland, Dept Phys, College Pk, MD 20742 USAGeorge Washington Univ, Dept Phys, Washington, DC 20052 USA
Alexandru, Andrei
[1
,2
]
Basar, Gokce
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USAGeorge Washington Univ, Dept Phys, Washington, DC 20052 USA
Basar, Gokce
[2
]
Bedaque, Paulo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USAGeorge Washington Univ, Dept Phys, Washington, DC 20052 USA
Bedaque, Paulo
[2
]
Ridgway, Gregory W.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USAGeorge Washington Univ, Dept Phys, Washington, DC 20052 USA
Ridgway, Gregory W.
[2
]
Warrington, Neill C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Phys, College Pk, MD 20742 USAGeorge Washington Univ, Dept Phys, Washington, DC 20052 USA
Warrington, Neill C.
[2
]
机构:
[1] George Washington Univ, Dept Phys, Washington, DC 20052 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
A relativistic Bose gas at finite density suffers from a sign problem that makes direct numerical simulations infeasible. One possible solution to the sign problem is to reexpress the path integral in terms of Lefschetz thimbles. Using this approach we study the relativistic Bose gas both in the symmetric phase (low density) and the spontaneously broken phase (high density). In the high-density phase we break explicitly the symmetry and determine the dependence of the order parameter on the breaking. We study the relative contributions of the dominant and subdominant thimbles in this phase. We find that the subdominant thimble only contributes substantially when the explicit symmetry breaking is small, a regime that is dominated by finite volume effects. In the regime relevant for the thermodynamic limit, this contribution is negligible.
引用
收藏
页数:12
相关论文
共 21 条
[21]
Vassiliev V A., 2002, Applied Picard-Lefschetz Theory