Halogenated indoles eradicate bacterial persister cells and biofilms

被引:79
|
作者
Lee, Jin-Hyung [1 ]
Kim, Yong-Guy [1 ]
Gwon, Giyeon [1 ]
Wood, Thomas K. [2 ]
Lee, Jintae [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
来源
AMB EXPRESS | 2016年 / 6卷
基金
新加坡国家研究基金会;
关键词
Antibiotic resistance; Biofilms; Escherichia coli; Indoles; Persisters; Staphylococcus aureus; PSEUDOMONAS-AERUGINOSA VIRULENCE; SIGNALING MOLECULE INDOLE; PROTEIN-SYNTHESIS; RESISTANCE; TOLERANCE; ANTIBIOTICS; DORMANCY;
D O I
10.1186/s13568-016-0297-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The emergence of antibiotic resistance has necessitated new therapeutic approaches to combat recalcitrant bacterial infections. Persister cells, often found in biofilms, are metabolically dormant, and thus, are highly tolerant to all traditional antibiotics and represent a major drug resistance mechanism. In the present study, 36 diverse indole derivatives were investigated with the aim of identifying novel compounds that inhibit persisters and biofilm formation by Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. 5-Iodoindole and other halogenated indoles, 4-fluoroindole, 7-chloroindole, and 7-bromoindole, eradicated persister formation by E. coli and S. aureus, and 5-iodoindole most potently inhibited biofilm formation by the two bacteria. Unlike other antibiotics, 5-iodoindole did not induce persister cell formation, and 5-iodoindole inhibited the production of the immune-evasive carotenoid staphyloxanthin in S. aureus; hence, 5-iodoindole diminished the production of virulence factors in this strain. These results demonstrate halogenated indoles are potentially useful for controlling bacterial antibiotic resistance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Tolerant, Growing Cells from Nutrient Shifts Are Not Persister Cells
    Kim, Jun-Seob
    Wood, Thomas K.
    MBIO, 2017, 8 (02):
  • [42] A pursuit ofStaphylococcus aureuscontinues: a role of persister cells
    Chang, JuOae
    Lee, Rho-Eun
    Lee, Wonsik
    ARCHIVES OF PHARMACAL RESEARCH, 2020, 43 (06) : 630 - 638
  • [43] Combatting Bacterial Persister cell infections by auranofin?
    Asghari, Babak
    Sadeghi, Hamid Reza
    Mazaherylaghab, Hamzeh
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 96 : 1565 - 1566
  • [44] Forms of Bacterial Survival in Model Biofilms
    Pankratov, Timofei A.
    Nikolaev, Yuri A.
    Yushina, Yulia K.
    Tikhonova, Ekaterina N.
    El-Registan, Galina I.
    COATINGS, 2022, 12 (12)
  • [45] Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms
    Barraud, Nicolas
    Buson, Alberto
    Jarolimek, Wolfgang
    Rice, Scott A.
    PLOS ONE, 2013, 8 (12):
  • [46] Interplay between Population Dynamics and Drug Tolerance of Staphylococcus aureus Persister Cells
    Lechner, Sabrina
    Patra, Pintu
    Klumpp, Stefan
    Bertram, Ralph
    JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (06) : 381 - 391
  • [47] Signaling-mediated bacterial persister formation
    Vega, Nicole M.
    Allison, Kyle R.
    Khalil, Ahmad S.
    Collins, James J.
    NATURE CHEMICAL BIOLOGY, 2012, 8 (05) : 431 - 433
  • [48] DNA-Crosslinker Cisplatin Eradicates Bacterial Persister Cells
    Chowdhury, Nityananda
    Wood, Thammajun L.
    Martinez-Vazquez, Mariano
    Garcia-Contreras, Rodolfo
    Wood, Thomas K.
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (09) : 1984 - 1992
  • [49] Optimal Control Strategies for Disinfection of Bacterial Populations with Persister and Susceptible Dynamics
    Cogan, N. G.
    Brown, Jason
    Darres, Kyle
    Petty, Katherine
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2012, 56 (09) : 4816 - 4826
  • [50] A Dicationic BODIPY-Based Fluorescent Bactericide to Combat Infectious Diseases and to Eradicate Bacterial Biofilms
    Kocak, Haluk Samet
    Bulut, Onur
    Yilmaz, M. Deniz
    ACS APPLIED BIO MATERIALS, 2023, 6 (04) : 1604 - 1610