Resilient Yolk-Shell Silicon-Reduced Graphene Oxide/Amorphous Carbon Anode Material from a Synergistic Dual-Coating Process for Lithium-Ion Batteries

被引:27
作者
Lin, Ming-Hsien [1 ]
Hy, Sunny [1 ]
Chen, Chun-Yu [2 ,3 ]
Cheng, Ju-Hsiang [1 ]
Rick, John [1 ]
Pu, Nen-Wen [3 ]
Su, Wei-Nien [4 ]
Lee, Yao-Chang [5 ]
Hwang, Bing-Joe [1 ,5 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Nanoelectrochem Lab, 43 Sect 4,Keelung Rd, Taipei 106, Taiwan
[2] Natl Chung Shan Inst Sci & Technol, 481 Sect Jia An,Zhongzheng Rd, Taoyuan, Taiwan
[3] Yuan Ze Univ, Dept Photon Engn, 135 Yuan Tung Rd, Taoyuan, Taiwan
[4] Natl Taiwan Univ Sci & Technol, Grad Inst Sci & Technol, 43 Sect 4,Keelung Rd, Taipei, Taiwan
[5] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd, Hsinchu, Taiwan
关键词
anodes; graphene; lithium-ion batteries; mechanical properties; nanostructures; HIGH-CAPACITY; FACILE SYNTHESIS; SI ANODES; NANOCOMPOSITE ANODE; COMPOSITE ANODES; ENERGY-STORAGE; PERFORMANCE; NANOPARTICLES; GRAPHITE; NANOWIRES;
D O I
10.1002/celc.201600254
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A dual-coating process was developed to prepare a unique yolk-shell silicon-reduced graphene oxide/amorphous carbon (YS-Si@rGO/a-C) anode material. The nanostructured Si composite anode material consists of Si cores, evenly wrapped with a first coating of graphene oxide constructed through electrostatic self-assembly, and a shell of a second reinforced coating of graphene oxide/amorphous carbon, integrated by using an economic hydrothermal carbonization process. Thermal reduction and HF etching were then applied to reduce graphene oxide into graphene and to create the required void space to endow the hybrid material with sufficient mechanical strength and to buffer against stresses induced by volume changes of the Si nanoparticles. The obtained YS-Si@rGO/a-C composite anode material has structural integrity together with conductive 3D-network beneficial to its electrochemical performance, attributed to the synergy of electrostatic self-assembly and hydrothermal carbonization. As a result, the composite anode has a superior initial coulombic efficiency of 76%, surpassing other published Si/G composite anodes, as well as an initial cycle reversible capacity of 1668mAhg(-1) at 0.4Ag(-1) and a capacity retention of 75% after over 100 cycles, when compared with the yolk-shell structured Si@a-C anode.
引用
收藏
页码:1446 / 1454
页数:9
相关论文
共 68 条
[1]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[2]   Manganese Oxide/Carbon Yolk-Shell Nanorod Anodes for High Capacity Lithium Batteries [J].
Cai, Zhengyang ;
Xu, Lin ;
Yan, Mengyu ;
Han, Chunhua ;
He, Liang ;
Hercule, Kalele Mulonda ;
Niu, Chaojiang ;
Yuan, Zefan ;
Xu, Wangwang ;
Qu, Longbing ;
Zhao, Kangning ;
Mai, Liqiang .
NANO LETTERS, 2015, 15 (01) :738-744
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[6]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[7]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[8]   Improving the Anode Performance of WS2 through a Self-Assembled Double Carbon Coating [J].
Du, Yichen ;
Zhu, Xiaoshu ;
Si, Ling ;
Li, Yafei ;
Zhou, Xiaosi ;
Bao, Jianchun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :15874-15881
[9]   The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction [J].
Dunn, J. B. ;
Gaines, L. ;
Kelly, J. C. ;
James, C. ;
Gallagher, K. G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :158-168
[10]   New Horizons for Conventional Lithium Ion Battery Technology [J].
Erickson, Evan M. ;
Ghanty, Chandan ;
Aurbach, Doron .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (19) :3313-3324