Spatio-temporal Similarity Measure for Network Constrained Trajectory Data

被引:15
|
作者
Xia, Ying [1 ,2 ]
Wang, Guo-Yin [2 ]
Zhang, Xu [3 ]
Kim, Gyoung-Bae [4 ]
Bae, Hae-Young [3 ]
机构
[1] SW Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[3] Inha Univ, Dept Comp Sci & Engn, Inchon 402751, South Korea
[4] Seowon Univ, Dept Comp Educ, Cheongju 361742, South Korea
基金
中国国家自然科学基金;
关键词
constrained trajectory; road network; spatio-temporal similarity measure; trajectory clustering;
D O I
10.1080/18756891.2011.9727855
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory similarity measure is an important issue for analyzing the behavior of moving objects. In this paper, a similarity measure method for network constrained trajectories is proposed. It considers spatial and temporal features simultaneously in calculating spatio-temporal distance. The crossing points of network and semantic information of trajectory are used to extract the characteristic points for trajectory partition. Experiment results show that the storage space is decreased after trajectory partition and the similarity measure method is valid and efficient for trajectory clustering.
引用
收藏
页码:1070 / 1079
页数:10
相关论文
共 50 条
  • [31] Network Constrained Spatio-Temporal Hotspot Mapping of Crimes in Faisalabad
    Khalid, Shoaib
    Shoaib, Fariha
    Qian, Tianlu
    Rui, Yikang
    Bari, Arezu Imran
    Sajjad, Muhammad
    Shakeel, Muhammad
    Wang, Jiechen
    APPLIED SPATIAL ANALYSIS AND POLICY, 2018, 11 (03) : 599 - 622
  • [32] Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China
    Li, Lan
    Xi, Yuliang
    Ren, Fu
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (03)
  • [33] A trajectory data compression algorithm based on spatio-temporal characteristics
    Zhong Y.
    Kong J.
    Zhang J.
    Jiang Y.
    Fan X.
    Wang Z.
    PeerJ Computer Science, 2022, 8
  • [34] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [35] SPATIO-TEMPORAL PATTERN MINING ON TRAJECTORY DATA USING ARM
    Khoshahval, S.
    Farnaghi, M.
    Taleai, M.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 395 - 399
  • [36] A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
    Ke, Shengnan
    Gong, Jun
    Li, Songnian
    Zhu, Qing
    Liu, Xintao
    Zhang, Yeting
    SENSORS, 2014, 14 (07) : 12990 - 13005
  • [37] A trajectory data compression algorithm based on spatio-temporal characteristics
    Zhong, Yanling
    Kong, Jinling
    Zhang, Juqing
    Jiang, Yizhu
    Fan, Xiao
    Wang, Zhuoyue
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [38] Spatio-Temporal Vehicle Trajectory Recovery on Road Network Based on Traffic Camera Video Data
    Yu, Fudan
    Ao, Wenxuan
    Yan, Huan
    Zhang, Guozhen
    Wu, Wei
    Li, Yong
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4413 - 4421
  • [39] Spatio-temporal similarity of network-constrained moving object trajectories using sequence alignment of travel locations
    Abraham, Sajimon
    Lal, P. Sojan
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2012, 23 : 109 - 123
  • [40] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233