Kink dynamics in finite discrete sine-Gordon chains

被引:4
|
作者
Kwasniewski, A [1 ]
Machnikowski, P [1 ]
Magnuszewski, P [1 ]
机构
[1] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 02期
关键词
D O I
10.1103/PhysRevE.59.2347
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of one-dimensional finite discrete sine-Gordon (Frenkel-Kontorova) chains is studied for small values of misfit. It is shown that nonintegrability leads to kink trapping at the system surface, stopping the system motion as a whole and localizing energy at the system boundary. An interpretation from the point of view of both dislocation dynamics and proton transport is proposed.
引用
收藏
页码:2347 / 2354
页数:8
相关论文
共 50 条
  • [21] DISCRETENESS EFFECTS ON THE DOUBLE SINE-GORDON KINK
    DINDA, PT
    WILLIS, CR
    PHYSICAL REVIEW E, 1995, 51 (05): : 4958 - 4977
  • [22] Scattering of fermionic isodoublets on the sine-Gordon kink
    Loginov, A. Yu
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (08):
  • [23] KINK ASYMPTOTICS OF THE PERTURBED SINE-GORDON EQUATION
    KISELEV, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (01) : 1106 - 1111
  • [24] KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION
    Segovia Chaves, Francis Armando
    REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01): : 6 - 11
  • [25] Dynamics of kink train solutions in deformed multiple Sine-Gordon models
    Peyravi, Marzieh
    Riazi, Nematollah
    Javidan, Kurosh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (01):
  • [26] Renormalization group method for kink dynamics in a perturbed sine-Gordon equation
    Wang, Li
    Tu, Tao
    Guo, Ping-Guo
    Guo, Guang-Can
    MODERN PHYSICS LETTERS B, 2014, 28 (09):
  • [27] SINE-GORDON MODEL FOR CLASSICAL KINK MECHANICS
    LEON, JJP
    REINISCH, G
    FERNANDEZ, JC
    PHYSICAL REVIEW B, 1983, 27 (09): : 5817 - 5818
  • [28] Scattering of fermionic isodoublets on the sine-Gordon kink
    A. Yu. Loginov
    The European Physical Journal C, 82
  • [29] Perturbation theory for the kink of the sine-Gordon equation
    Tang, Y
    Wang, W
    PHYSICAL REVIEW E, 2000, 62 (06) : 8842 - 8845
  • [30] BROWNIAN-MOTION OF A SINE-GORDON KINK
    MARCHESONI, F
    WILLIS, CR
    PHYSICAL REVIEW A, 1987, 36 (09): : 4559 - 4562