SOFT MASK CORRELATION FILTER FOR VISUAL OBJECT TRACKING

被引:0
作者
Huo, Yang
Wang, Yuehuan [1 ]
Yan, Xiaoyun
Dai, Kaiheng
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan, Hubei, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
关键词
soft mask; correlation filter; tracking; boundary effects;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Correlation filters have shown excellent performance in visual object tracking both in speed and accuracy. However, the traditional correlation filters learn from the shifted patches rather than real background patches, which may reduce the discrimination in challenging situations. In this paper, we propose a Soft Mask Correlation Filter (SMCF) which can effectively model the object by real image patches. The soft mask is conducted on the entire frame densely and crops real background patches for training. It enables the correlation filter to pay more attention to the center part of the object rather than an axis aligned rectangle which contains background pixels. Both quantitative and qualitative evaluations conducted on tracking benchmarks demonstrate the superior performance of our method compared to the state-of-the-art trackers.
引用
收藏
页码:2705 / 2709
页数:5
相关论文
共 19 条
  • [1] [Anonymous], 2014, BRIT MACH VIS C
  • [2] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [3] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [4] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [5] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [6] Learning Spatially Regularized Correlation Filters for Visual Tracking
    Danelljan, Martin
    Hager, Gustav
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4310 - 4318
  • [7] Galoogahi HK, 2017, IEEE I CONF COMP VIS, P1144, DOI [10.1109/ICCV.2017.128, 10.1109/ICCV.2017.129]
  • [8] Galoogahi HK, 2015, PROC CVPR IEEE, P4630, DOI 10.1109/CVPR.2015.7299094
  • [9] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [10] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 702 - 715