Multi-Terrain Velocity Control of the Spherical Robot by Online Obtaining the Uncertainties in the Dynamics

被引:14
作者
Liu, Yifan [1 ]
Wang, Yixu [1 ]
Guan, Xiaoqing [1 ]
Wang, You [1 ]
Jin, Song [1 ]
Hu, Tao [1 ]
Ren, Wei [1 ]
Hao, Jie [2 ]
Zhang, Jin [3 ]
Li, Guang [1 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Luoteng Hangzhou Techonl Co Ltd, Hangzhou 310027, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2022年 / 7卷 / 02期
关键词
Motion control; multi-terrain control; robust/adaptive control; spherical robot; SLIDING-MODE CONTROL;
D O I
10.1109/LRA.2022.3141210
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
One controller cannot work on multiple and unknown terrains in the velocity control of the spherical robot, because the dynamic models of' the robot vary on different terrains, and unmodeled dynamics and uncertainties exist in estimated dynamic models. Based on the above problem, a new velocity controller for spherical robot is designed. This controller combines a hierarchical sliding mode controller (HSMC), an adaptive RBF neural network (RBFNN) and a variable step-size algorithm. The RBFNN is used to online estimate the uncertainties, and the Lyapunov function is utilized to design the adaptive law for the RBFNN. In order to learn the uncertainties faster, while minimizing overshoot and preventing velocity oscillations, a variable step-size algorithm is proposed. The practical experiments demonstrate that, this controller of the spherical robot achieves velocity tracking on multiple and complex terrains, while eliminating steady-state error, having a good control effect, and maintaining high stability.
引用
收藏
页码:2732 / 2739
页数:8
相关论文
共 26 条
  • [1] Andani MT, 2018, IEEE IND ELEC, P2534, DOI 10.1109/IECON.2018.8591640
  • [2] Observer-Based Sliding Mode Control for Path Tracking of a Spherical Robot
    Andani, Majid Taheri
    Ramezani, Zahra
    Moazami, Saeed
    Cao, Jinde
    Arefi, Mohammad Mehdi
    Zargarzadeh, Hassan
    [J]. COMPLEXITY, 2018,
  • [3] Ayati M, 2017, RSI INT CONF ROBOT M, P334, DOI 10.1109/ICRoM.2017.8466187
  • [4] Adaptive second-order sliding mode control with uncertainty compensation
    Bartolini, G.
    Levant, A.
    Pisano, A.
    Usai, E.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (09) : 1747 - 1758
  • [5] Path tracking control of a spherical mobile robot
    Cai, Yao
    Zhan, Qiang
    Xi, Xi
    [J]. MECHANISM AND MACHINE THEORY, 2012, 51 : 58 - 73
  • [6] Capotondi M., 2020, P C ROB LEARN, P1359
  • [7] Recurrent Neural Network-Based Robust Nonsingular Sliding Mode Control With Input Saturation for a Non-Holonomic Spherical Robot
    Chen, Shu-Bo
    Beigi, Alireza
    Yousefpour, Amin
    Rajaee, Farhad
    Jahanshahi, Hadi
    Bekiros, Stelios
    Martinez, Raul Alcaraz
    Chu, Yuming
    [J]. IEEE ACCESS, 2020, 8 : 188441 - 188453
  • [8] Chen SY, 2020, IEEE INT CONF ROBOT, P2358, DOI [10.1109/ICRA40945.2020.9197051, 10.1109/icra40945.2020.9197051]
  • [9] Design and analysis of a spherical mobile robot
    Joshi, Vrunda A.
    Banavar, Ravi N.
    Hippalgaonkar, Rohit
    [J]. MECHANISM AND MACHINE THEORY, 2010, 45 (02) : 130 - 136
  • [10] Kamis NN, 2019, 2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), P155, DOI [10.1109/i2cacis.2019.8825075, 10.1109/I2CACIS.2019.8825075]