Secondary aerosol formation during the dark oxidation of residential biomass burning emissions

被引:13
|
作者
Kodros, John K. [1 ]
Kaltsonoudis, Christos [1 ]
Paglione, Marco [2 ]
Florou, Kalliopi [1 ]
Jorga, Spiro [3 ]
Vasilakopoulou, Christina [1 ,4 ,5 ]
Cirtog, Manuela [6 ]
Cazaunau, Mathieu [6 ]
Picquet-Varrault, Benedicte [6 ]
Nenes, Athanasios [1 ,7 ]
Pandis, Spyros N. [1 ,4 ,5 ]
机构
[1] Inst Chem Engn Sci, ICE HT, Patras 26504, Greece
[2] Italian Natl Res Council, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy
[3] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[4] Univ Paris Est Creteil, F-94010 Creteil, France
[5] Univ Paris Cite, CNRS, LISA, F-94010 Creteil, France
[6] Univ Paris, Univ Paris Est Creteil, Inst Pierre Simon Laplace IPSL, LISA,UMR CNRS 7583, Creteil, France
[7] Swiss Fed Inst Technol Lausanne, Sch Architecture Civil & Environm Engn, CH-1015 Lausanne, Switzerland
来源
ENVIRONMENTAL SCIENCE-ATMOSPHERES | 2022年 / 2卷 / 05期
基金
欧洲研究理事会;
关键词
PRIMARY ORGANIC AEROSOL; PARTICULATE MATTER; MASS-SPECTROMETER; NITRATE RADICALS; FIRE EMISSIONS; BOUNDARY-LAYER; BROWN CARBON; NO3; CHAMBER; ACIDITY;
D O I
10.1039/d2ea00031h
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 mu g m(-3) of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO3 radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO3 radical concentrations in an urban environment). The average mass concentration of SOA formed under dark-oxidation conditions was comparable to the mass concentration formed after 3 h (equivalent to 7-10 h of ambient exposure) under ultraviolet lights (6 mu g m(-3) or a 47% increase over the emitted organic aerosol concentration). The dark-aging experiments showed a substantial increase in secondary nitrate aerosol (0.12-3.8 mu g m(-3)), 46-100% of which is in the form of organic nitrates. The biomass burning aerosol pH remained practically constant at 2.8 throughout the experiment. This value promotes inorganic nitrate partitioning to the particulate phase, potentially contributing to the buildup of nitrate aerosol in the boundary layer and enhancing long-range transport. These results suggest that oxidation through reactions with the NO3 radical is an additional secondary aerosol formation pathway in biomass burning emission plumes that should be accounted for in atmospheric chemical-transport models.
引用
收藏
页码:1221 / 1236
页数:16
相关论文
共 50 条
  • [41] Effect of Biomass Burning on PM2.5 Composition and Secondary Aerosol Formation During Post-Monsoon and Winter Haze Episodes in Delhi
    Lalchandani, V
    Srivastava, D.
    Dave, J.
    Mishra, S.
    Tripathi, N.
    Shukla, A. K.
    Sahu, R.
    Thamban, N. M.
    Gaddamidi, S.
    Dixit, K.
    Ganguly, D.
    Tiwari, S.
    Srivastava, A. K.
    Sahu, L.
    Rastogi, N.
    Gargava, P.
    Tripathi, S. N.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (01)
  • [42] Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions
    Ots, Riinu
    Heal, Mathew R.
    Young, Dominique E.
    Williams, Leah R.
    Allan, James D.
    Nemitz, Eiko
    Di Marco, Chiara
    Detournay, Anais
    Xu, Lu
    Ng, Nga L.
    Coe, Hugh
    Herndon, Scott C.
    Mackenzie, Ian A.
    Green, David C.
    Kuenen, Jeroen J. P.
    Reis, Stefan
    Vieno, Massimo
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (07) : 4497 - 4518
  • [43] Significant contributions of fresh and aged biomass burning organic aerosol from residential burning in a wintertime urban environment
    Kaltsonoudis, Christos
    Florou, Kalliopi
    Kodros, John K.
    Jorga, Spiro D.
    Vasilakopoulou, Christina N.
    Baliaka, Haroula D.
    Matrali, Angeliki
    Aktypis, Andreas
    Georgopoulou, Maria P.
    Nenes, Athanasios
    Pandis, Spyros N.
    ATMOSPHERIC ENVIRONMENT, 2025, 343
  • [44] Characterization of Aerosol Properties from the Burning Emissions of Typical Residential Fuels on the Tibetan Plateau
    Zhang, Xinghua
    Xu, Jianzhong
    Zhai, Lixiang
    Zhao, Wenhui
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14296 - 14305
  • [45] Quantification of Organic Carbon from Biomass Versus Non-Biomass Burning Emissions to Fine Aerosol
    Singh, Atinderpal
    Rastogi, Neeraj
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2019, 85 (03): : 629 - 636
  • [46] Dramatic changes in Harbin aerosol during 2018-2020: the roles of open burning policy and secondary aerosol formation
    Cheng, Yuan
    Yu, Qin-qin
    Liu, Jiu-meng
    Cao, Xu-bing
    Zhong, Ying-jie
    Du, Zhen-yu
    Liang, Lin-lin
    Geng, Guan-nan
    Ma, Wan-li
    Qi, Hong
    Zhang, Qiang
    He, Ke-bin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (19) : 15199 - 15211
  • [47] Secondary Organic Aerosol Formation from Photo-Oxidation of Unburned Fuel: Experimental Results and Implications for Aerosol Formation from Combustion Emissions
    Jathar, Shantanu H.
    Miracolo, Marissa A.
    Tkacik, Daniel S.
    Donahue, Neil M.
    Adams, Peter J.
    Robinson, Allen L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (22) : 12886 - 12893
  • [49] MOLECULAR NITROGEN EMISSIONS FROM DENITRIFICATION DURING BIOMASS BURNING
    KUHLBUSCH, TA
    LOBERT, JM
    CRUTZEN, PJ
    WARNECK, P
    NATURE, 1991, 351 (6322) : 135 - 137
  • [50] Enhanced Methane Emissions during Amazonian Drought by Biomass Burning
    Saito, Makoto
    Kim, Heon-Sook
    Ito, Akihiko
    Yokota, Tatsuya
    Maksyutov, Shamil
    PLOS ONE, 2016, 11 (11):