New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress

被引:49
|
作者
Alet, Analia I. [1 ]
Sanchez, Diego H. [1 ]
Cuevas, Juan C. [2 ]
Marina, Maria [1 ]
Carrasco, Pedro [3 ]
Altabella, Teresa [2 ]
Tiburcio, Antonio F. [2 ]
Ruiz, Oscar A. [1 ]
机构
[1] Inst Tecnol Chascomus IIB INTECH UNSAM CONICET, Unidad Biotecnol 1, Chascomus, Buenos Aires, Argentina
[2] Univ Barcelona, Fac Farm, Lab Fisiol Vegetal, E-08028 Barcelona, Spain
[3] Univ Valencia, Dept Bioquim & Biol Mol, Fac Ciencies Biol, E-46100 Valencia, Spain
关键词
Polyamines; Salinity; Salt stress; sos mutants; Spermine; Thermospermine; SIGNAL-TRANSDUCTION PATHWAY; ARGININE DECARBOXYLASE; POLYAMINE BIOSYNTHESIS; STEM ELONGATION; GENE; TOLERANCE; ACCUMULATION; EXPRESSION; PLANT; THERMOSPERMINE;
D O I
10.1016/j.plantsci.2011.03.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis (acl5-1, spms-1 and acl5-1/spms-1). Results presented here indicate that induction in polyamine metabolism is a SOS-independent response to salinity and is globally over-induced in a sensitive background. In addition, under long-term salinity, the mutants in the synthesis of spermine and thermospermine (acl5-1, spms-1 and double acl5-1/spms-1) accumulated more Na+ and performed worst than WT in survival experiments. Therefore, support is given to a role for these higher polyamines in salt tolerance mechanisms. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:94 / 100
页数:7
相关论文
共 50 条
  • [31] Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short-term and long-term salt stress in Arabidopsis thaliana
    Sottosanto, Jordan B.
    Saranga, Yehoshua
    Blumwald, Eduardo
    BMC PLANT BIOLOGY, 2007, 7 (1)
  • [32] The role of antioxidative metabolism of tomato leaves in long-term salt-stress response
    Koleska, Ivana
    Hasanagic, Dino
    Maksimovic, Ivana
    Bosancic, Borut
    Kukavica, Biljana
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2017, 180 (01) : 105 - 112
  • [33] Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers
    Tassoni, Annalisa
    Franceschetti, Marina
    Bagni, Nello
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (5-6) : 607 - 613
  • [34] Genetic mapping of the early responses to salt stress in Arabidopsis thaliana
    Awlia, Mariam
    Alshareef, Nouf
    Saber, Noha
    Korte, Arthur
    Oakey, Helena
    Panzarova, Klara
    Trtilek, Martin
    Negrao, Sonia
    Tester, Mark
    Julkowska, Magdalena M.
    PLANT JOURNAL, 2021, 107 (02): : 544 - 563
  • [35] Isolation of molecular markers for salt stress responses in Arabidopsis thaliana
    Pih, KT
    Jang, HJ
    Kang, SG
    Piao, HL
    Hwang, I
    MOLECULES AND CELLS, 1997, 7 (04) : 567 - 571
  • [36] The effect of salt stress on Arabidopsis thaliana and Phelipanche ramosa interaction
    Demirbas, S.
    Vlachonasios, K. E.
    Acar, O.
    Kaldis, A.
    WEED RESEARCH, 2013, 53 (06) : 452 - 460
  • [37] Insights into the response mechanisms of activated sludge system under long-term dexamethasone stress
    Liu, Zhichao
    Liu, Qiaona
    Hao, Chenlin
    Zhao, Yanmin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 933
  • [38] A protective role for the polyamine spermine against drought stress in Arabidopsis
    Yamaguchi, Koji
    Takahashi, Yoshihiro
    Berberich, Thomas
    Imai, Akihiko
    Takahashi, Taku
    Michael, Anthonv J.
    Kusano, Tomonobu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 352 (02) : 486 - 490
  • [39] Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions
    Aleman, Fernando
    Nieves-Cordones, Manuel
    Martinez, Vicente
    Rubio, Francisco
    PLANT SCIENCE, 2009, 176 (06) : 768 - 774
  • [40] MANAGING LONG-TERM OSTEOPOROSIS: NEW INSIGHTS
    Papapoulos, Socrates
    Ferrari, Serge
    Seeman, Ego
    OSTEOPOROSIS INTERNATIONAL, 2015, 26 : S385 - S386