New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress

被引:49
|
作者
Alet, Analia I. [1 ]
Sanchez, Diego H. [1 ]
Cuevas, Juan C. [2 ]
Marina, Maria [1 ]
Carrasco, Pedro [3 ]
Altabella, Teresa [2 ]
Tiburcio, Antonio F. [2 ]
Ruiz, Oscar A. [1 ]
机构
[1] Inst Tecnol Chascomus IIB INTECH UNSAM CONICET, Unidad Biotecnol 1, Chascomus, Buenos Aires, Argentina
[2] Univ Barcelona, Fac Farm, Lab Fisiol Vegetal, E-08028 Barcelona, Spain
[3] Univ Valencia, Dept Bioquim & Biol Mol, Fac Ciencies Biol, E-46100 Valencia, Spain
关键词
Polyamines; Salinity; Salt stress; sos mutants; Spermine; Thermospermine; SIGNAL-TRANSDUCTION PATHWAY; ARGININE DECARBOXYLASE; POLYAMINE BIOSYNTHESIS; STEM ELONGATION; GENE; TOLERANCE; ACCUMULATION; EXPRESSION; PLANT; THERMOSPERMINE;
D O I
10.1016/j.plantsci.2011.03.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis (acl5-1, spms-1 and acl5-1/spms-1). Results presented here indicate that induction in polyamine metabolism is a SOS-independent response to salinity and is globally over-induced in a sensitive background. In addition, under long-term salinity, the mutants in the synthesis of spermine and thermospermine (acl5-1, spms-1 and double acl5-1/spms-1) accumulated more Na+ and performed worst than WT in survival experiments. Therefore, support is given to a role for these higher polyamines in salt tolerance mechanisms. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:94 / 100
页数:7
相关论文
共 50 条
  • [1] Free spermidine and spermine content in Lotus glaber under long-term salt stress
    Sanchez, DH
    Cuevas, JC
    Chiesa, MA
    Ruiz, OA
    PLANT SCIENCE, 2005, 168 (02) : 541 - 546
  • [2] The polyamine spermine protects against high salt stress in Arabidopsis thaliana
    Yamaguchi, Koji
    Takahashi, Yoshihiro
    Berberich, Thomas
    Imai, Akihiko
    Miyazaki, Atsushi
    Takahashi, Taku
    Michael, Anthony
    Kusano, Tomonobu
    FEBS LETTERS, 2006, 580 (30) : 6783 - 6788
  • [3] A role of polyamine spermine in adaptive response to high salt stress in Arabidopsis
    Yamaguchi, K
    Takahashi, Y
    Berberich, T
    Imai, A
    Miyazaki, A
    Takahashi, T
    Kusano, T
    PLANT AND CELL PHYSIOLOGY, 2006, 47 : S37 - S37
  • [4] Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress
    Jimenez-Bremont, Juan F.
    Ruiz, Oscar A.
    Rodriguez-Kessler, Margarita
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2007, 45 (10-11) : 812 - 821
  • [5] Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana
    Chen, Yang-Er
    Liu, Wen-Juan
    Su, Yan-Qiu
    Cui, Jun-Mei
    Zhang, Zhong-Wei
    Yuan, Ming
    Zhang, Huai-Yu
    Yuan, Shu
    PHYSIOLOGIA PLANTARUM, 2016, 158 (02) : 225 - 235
  • [6] Spermine accumulation under salt stress
    Maiale, S
    Sánchez, DH
    Guirado, A
    Vidal, A
    Ruiz, OA
    JOURNAL OF PLANT PHYSIOLOGY, 2004, 161 (01) : 35 - 42
  • [7] CATALASE2 plays a crucial role in long-term heat tolerance of Arabidopsis thaliana
    Ono, Masaaki
    Isono, Kazuho
    Sakata, Yoichi
    Taji, Teruaki
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 534 : 747 - 751
  • [8] Meta-analysis of Arabidopsis thaliana under abscisic acid and salt stress
    Yu, Guowu
    Zang, Weidong
    Yang, Xianquan
    Wang, Lishan
    Tang, Zongxiang
    Luo, Peigao
    JOURNAL OF MEDICINAL PLANTS RESEARCH, 2011, 5 (24): : 5889 - 5893
  • [9] Impact of anoxygenic phototrophic bacteria on the growth of Arabidopsis thaliana under salt stress
    Aksoy, Behiye nur
    Ettadili, Hamza
    Vural, Caner
    TURKISH JOURNAL OF BOTANY, 2025, 49 (01)
  • [10] The major photoprotective role of anthocyanins in leaves of Arabidopsis thaliana under long-term high light treatment: antioxidant or light attenuator?
    Xiao-Ting Zheng
    Zheng-Chao Yu
    Jun-Wei Tang
    Min-Ling Cai
    Yi-Lin Chen
    Cheng-Wei Yang
    Wah Soon Chow
    Chang-Lian Peng
    Photosynthesis Research, 2021, 149 : 25 - 40