MITTAG-LEFFLER STABILITY ANALYSIS OF TEMPERED FRACTIONAL NEURAL NETWORKS WITH SHORT MEMORY AND VARIABLE-ORDER

被引:15
|
作者
Gu, Chuan-Yun [1 ]
Zheng, Feng-Xia [1 ,2 ]
Shiri, Babak [3 ]
机构
[1] Sichuan Univ Arts & Sci, Sch Math, Dazhou 635000, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[3] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
关键词
Mittag-Leffler Stability; Tempered Fractional Neural Networks; Short Memory; Variable-Order Tempered Fractional Neural Networks; DIFFERENTIAL-EQUATIONS; ALGEBRAIC EQUATIONS; NUMERICAL-METHOD; ALGORITHM; SYSTEM;
D O I
10.1142/S0218348X21400296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of tempered fractional neural networks is proposed in this paper. Stability conditions for tempered fractional neural networks are provided by using Banach fixed point theorem. Attractivity and Mittag-Leffler stability are given. In order to show the efficiency and convenience of the method used, tempered fractional neural networks with and without delay are discussed, respectively. Furthermore, short memory and variable-order tempered fractional neural networks are proposed under the global conditions. Finally, two numerical examples are used to demonstrate the theoretical results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Mittag-Leffler stability of numerical solutions to time fractional ODEs
    Wang, Dongling
    Zou, Jun
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2125 - 2159
  • [42] Generalized Mittag-Leffler Stability of Hilfer Fractional Order Nonlinear Dynamic System
    Wang, Guotao
    Qin, Jianfang
    Dong, Huanhe
    Guan, Tingting
    MATHEMATICS, 2019, 7 (06)
  • [43] Multiple Mittag-Leffler Stability of Delayed Fractional-Order Cohen-Grossberg Neural Networks via Mixed Monotone Operator Pair
    Zhang, Fanghai
    Zeng, Zhigang
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (12) : 6333 - 6344
  • [44] Mittag-Leffler stability for a fractional viscoelastic telegraph problem
    Tatar, Nasser-eddine
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14184 - 14205
  • [45] Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with generalized piecewise constant argument
    Wang, Jingjing
    Zhu, Song
    Liu, Xiaoyang
    Wen, Shiping
    NEURAL NETWORKS, 2023, 162 : 175 - 185
  • [46] Global Mittag-Leffler stability for fractional-order quaternion-valued neural networks with piecewise constant arguments and impulses
    Chen, Yanxi
    Song, Qiankun
    Zhao, Zhenjiang
    Liu, Yurong
    Alsaadi, Fuad E.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (08) : 1756 - 1768
  • [47] Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays
    Ali, M. Syed
    Narayanan, G.
    Shekher, Vineet
    Alsaedi, Ahmed
    Ahmad, Bashir
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [48] Mittag-Leffler Stability and Synchronization of Multi-delayed Fractional Neural Networks via Halanay Inequality
    Li, Lin-Wei
    Lu, Yu-Feng
    Wang, Feng-Xian
    Liu, Xin-Ge
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, 44 (02) : 862 - 887
  • [49] Lur'e Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument
    Wang, Li-Fei
    Wu, Huaiqin
    Liu, Da-Yan
    Boutat, Driss
    Chen, Yi-Ming
    NEUROCOMPUTING, 2018, 302 : 23 - 32
  • [50] An operational matrix method for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag-Leffler kernel
    Heydari, M. H.
    Atangana, A.
    Avazzadeh, Z.
    Mahmoudi, M. R.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02)