SFEM: Structural feature extraction methodology for the detection of malicious office documents using machine learning methods

被引:55
作者
Cohen, Aviad [1 ,2 ]
Nissim, Nir [1 ,2 ]
Rokach, Lior [1 ,2 ]
Elovici, Yuval [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Dept Informat Syst Engn, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Cyber Secur Res Ctr, Malware Lab, IL-84105 Beer Sheva, Israel
关键词
Machine learning; Malware detection; Static analysis; Structural features; Microsoft office open xml; Document; MALWARE DETECTION; PDF FILES; CLASSIFICATION;
D O I
10.1016/j.eswa.2016.07.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Office documents are used extensively by individuals and organizations. Most users consider these documents safe for use. Unfortunately, Office documents can contain malicious components and perform harmful operations. Attackers increasingly take advantage of naive users and leverage Office documents in order to launch sophisticated advanced persistent threat (APT) and ransomware attacks. Recently, targeted cyber-attacks against organizations have been initiated with emails containing malicious attachments. Since most email servers do not allow the attachment of executable files to emails, attackers prefer to use of non-executable files (e.g., documents) for malicious purposes. Existing anti-virus engines primarily use signature-based detection methods, and therefore fail to detect new unknown malicious code which has been embedded in an Office document. Machine learning methods have been shown to be effective at detecting known and unknown malware in various domains, however, to the best of our knowledge, machine learning methods have not been used for the detection of malicious XML-based Office documents (*.docx, *.xlsx, *.pptx, *.odt, *.ods, etc.). In this paper we present a novel structural feature extraction methodology (SFEM) for XML-based Office documents. SFEM extracts discriminative features from documents, based on their structure. We leveraged SFEM's features with machine learning algorithms for effective detection of malicious *.docx documents. We extensively evaluated SFEM with machine learning classifiers using a representative collection (16,938 *.docx documents collected "from the wild") which contains 4.9% malicious and similar to 95.1% benign documents. We examined 1,600 unique configurations based on different combinations of feature extraction, feature selection, feature representation, top-feature selection methods, and machine learning classifiers. The results show that machine learning algorithms trained on features provided by SFEM successfully detect new unknown malicious *.docx documents. The Random Forest classifier achieves the highest detection rates, with an AUC of 99.12% and true positive rate (TPR) of 97% that is accompanied by a false positive rate (FPR) of 4.9%. In comparison, the best anti-virus engine achieves a TPR which is 25% lower. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:324 / 343
页数:20
相关论文
共 50 条
  • [21] Liking Prediction Using fNIRS and Machine Learning: Comparison of Feature Extraction Methods
    Koksal, Mehmet Yigit
    Cakar, Tuna
    Tuna, Esin
    Girisken, Yener
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [22] Machine Learning Approaches to Malicious PowerShell Scripts Detection and Feature Combination Analysis
    Hung, Hsiang-Hua
    Chen, Jiann-Liang
    Ma, Yi-Wei
    JOURNAL OF INTERNET TECHNOLOGY, 2024, 25 (01): : 167 - 173
  • [23] Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT
    Musleh, Dhiaa
    Alotaibi, Meera
    Alhaidari, Fahd
    Rahman, Atta
    Mohammad, Rami M.
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [24] Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms
    Singh, Jagsir
    Singh, Jaswinder
    INFORMATION AND SOFTWARE TECHNOLOGY, 2020, 121
  • [25] A Study on Facial Expression Change Detection Using Machine Learning Methods with Feature Selection Technique
    Sung, Sang-Ha
    Kim, Sangjin
    Park, Byung-Kwon
    Kang, Do-Young
    Sul, Sunhae
    Jeong, Jaehyun
    Kim, Sung-Phil
    MATHEMATICS, 2021, 9 (17)
  • [26] Feature Extraction and Classification by Machine Learning Methods for Biometric Recognition of Face and Iris
    Oravec, Milos
    2014 56TH INTERNATIONAL SYMPOSIUM ELMAR (ELMAR), 2014, : 1 - 4
  • [27] Feature mining for encrypted malicious traffic detection with deep learning and other machine learning algorithms
    Wang, Zihao
    Thing, Vrizlynn L. L.
    COMPUTERS & SECURITY, 2023, 128
  • [28] Empirical Study on Malicious URL Detection Using Machine Learning
    Patgiri, Ripon
    Katari, Hemanth
    Kumar, Ronit
    Sharma, Dheeraj
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY, ICDCIT 2019, 2019, 11319 : 380 - 388
  • [29] MalDC: Malicious Software Detection and Classification using Machine Learning
    Moon, Jaewoong
    Kim, Subin
    Jangyong, Park
    Lee, Jieun
    Kim, Kyungshin
    Song, Jaeseung
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (05): : 1466 - 1488
  • [30] Detection of Malicious Software by Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms
    Ashik, Mathew
    Jyothish, A.
    Anandaram, S.
    Vinod, P.
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    ELECTRONICS, 2021, 10 (14)