CFFNet: Cross-scale Feature Fusion Network for Real-Time Semantic Segmentation

被引:1
|
作者
Luo, Qifeng [1 ]
Xu, Ting-Bing [1 ]
Wei, Zhenzhong [1 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Key Lab Precis Optomechatron Technol, Minist Educ, Beijing, Peoples R China
来源
PATTERN RECOGNITION, ACPR 2021, PT I | 2022年 / 13188卷
关键词
Semantic segmentation; Lightweight network; Feature fusion; Real-time;
D O I
10.1007/978-3-031-02375-0_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite deep learning based semantic segmentation methods have achieved significant progress, the inference speed of high-performance segmentation model is harder to meet the demand of various real-time applications. In this paper, we propose an cross-scale feature fusion network (CFFNet) to harvest the compact segmentatiHon model with high accuracy. Specifically, we design a novel lightweight residual block in backbone with increasing block depth strategy instead of inverted residual block with increasing local layer width strategy for better feature representative learning while reducing the computational cost by about 75%. Moreover, we design the cross-scale feature fusion module which contains three path to effectively fuse semantic features with different resolutions while enhancing multi-scale feature representation via cross-edge connections from inputs to last path. Experiments on Cityscapes demonstrate that CFFNet performs agreeably on accuracy and speed. For 2048 x 1024 input image, our model achieves 81.2% and 79.9% mIoU on validation and test sets at 46.5 FPS on a 2080Ti GPU.
引用
收藏
页码:338 / 351
页数:14
相关论文
共 50 条
  • [31] Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion
    Wu, Bao
    Xiong, Xingzhong
    Wang, Yong
    ELECTRONICS, 2024, 13 (18)
  • [32] EMFANet: a lightweight network with efficient multi-scale feature aggregation for real-time semantic segmentation
    Xuegang Hu
    Yan Ke
    Journal of Real-Time Image Processing, 2024, 21
  • [33] Real-time Semantic Segmentation with Context Aggregation Network
    Yang, Michael Ying
    Kumaar, Saumya
    Lyu, Ye
    Nex, Francesco
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 124 - 134
  • [34] Multi-scale feature fusion network for real-time semantic segmentation of urban street scenes: enhancing detail retention and accuracy
    Xiang, Shijie
    Zhou, Dong
    Tian, Dan
    VISUAL COMPUTER, 2025,
  • [35] EMFANet: a lightweight network with efficient multi-scale feature aggregation for real-time semantic segmentation
    Hu, Xuegang
    Ke, Yan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [36] Lightweight and efficient asymmetric network design for real-time semantic segmentation
    Xiu-Ling Zhang
    Bing-Ce Du
    Zhao-Ci Luo
    Kai Ma
    Applied Intelligence, 2022, 52 : 564 - 579
  • [37] LightSeg: A Light-weight Network for Real-time Semantic Segmentation
    Ye, Run
    Li, Benhui
    Yan, Bin
    Li, Zhiyong
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [38] Parallel segmentation network for real-time semantic segmentation
    Chen, Guanke
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    Song, Tao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [39] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Zhao, Shan
    Wu, Xuan
    Tian, Kaiwen
    Yuan, Yang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1899 - 1916
  • [40] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Shan Zhao
    Xuan Wu
    Kaiwen Tian
    Yang Yuan
    Complex & Intelligent Systems, 2024, 10 : 1899 - 1916