Unsupervised identification of topological phase transitions using predictive models

被引:52
|
作者
Greplova, Eliska [1 ]
Valenti, Agnes [1 ]
Boschung, Gregor [1 ]
Schafer, Frank [2 ]
Lorch, Niels [2 ]
Huber, Sebastian D. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 04期
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
topological phase transitions; unsupervised learning; quantum phase transitions; topological order; Ising gauge theory; toric code; ORDER;
D O I
10.1088/1367-2630/ab7771
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine-learning driven models have proven to be powerful tools for the identification of phases of matter. In particular, unsupervised methods hold the promise to help discover new phases of matter without the need for any prior theoretical knowledge. While for phases characterized by a broken symmetry, the use of unsupervised methods has proven to be successful, topological phases without a local order parameter seem to be much harder to identify without supervision. Here, we use an unsupervised approach to identify boundaries of the topological phases. We train artificial neural nets to relate configurational data or measurement outcomes to quantities like temperature or tuning parameters in the Hamiltonian. The accuracy of these predictive models can then serve as an indicator for phase transitions. We successfully illustrate this approach on both the classical Ising gauge theory as well as on the quantum ground state of a generalized toric code.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Topological phase transitions and Thouless pumping of light in photonic waveguide arrays
    Ke, Yongguan
    Qin, Xizhou
    Mei, Feng
    Zhong, Honghua
    Kivshar, Yuri S.
    Lee, Chaohong
    LASER & PHOTONICS REVIEWS, 2016, 10 (06) : 995 - 1001
  • [22] Robust Teleportation of a Surface Code and Cascade of Topological Quantum Phase Transitions
    Eckstein, Finn
    Han, Bo
    Trebst, Simon
    Zhu, Guo-Yi
    PRX QUANTUM, 2024, 5 (04):
  • [23] Topological phase transitions and Weyl semimetal phases in chiral photonic metamaterials
    Han, Ning
    Liu, Jianlong
    Gao, Yang
    Zhou, Keya
    Liu, Shutian
    NEW JOURNAL OF PHYSICS, 2022, 24 (05)
  • [24] Nonlinear Quantum Neuro-Psycho-Dynamics with Topological Phase Transitions
    Ivancevic, Vladimir G.
    Ivancevic, Tijana T.
    NEUROQUANTOLOGY, 2008, 6 (04) : 349 - 368
  • [25] Topological phase transitions induced by varying topology and boundaries in the toric code
    Jamadagni, Amit
    Bhattacharyya, Arpan
    NEW JOURNAL OF PHYSICS, 2021, 23 (10):
  • [26] Topological phase transitions and flat bands on a square-octagon lattice
    Zhao, Yu-Jie
    Yan, Xu-Hui
    Han, Ying
    Zhang, Xiuyun
    Qi, Lu
    He, Ai-Lei
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [27] Terahertz flexible multiplexing chip enabled by synthetic topological phase transitions
    Ren, Hang
    Xu, Su
    Lyu, Zhidong
    Li, Yuanzhen
    Yang, Zuomin
    Xu, Quan
    Yu, Yong-Sen
    Li, Yanfeng
    Gao, Fei
    Yu, Xianbin
    Han, Jiaguang
    Chen, Qi-Dai
    Sun, Hong-Bo
    NATIONAL SCIENCE REVIEW, 2024, 11 (08)
  • [28] Unsupervised Congestion Status Identification Using LMP Data
    Zheng, Kedi
    Chen, Qixin
    Wang, Yi
    Kang, Chongqing
    Xie, Le
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 726 - 736
  • [29] UNSUPERVISED LEARNING OF MOTION PATTERNS USING GENERATIVE MODELS
    Nascimento, Jacinto C.
    Figueiredo, Mario A. T.
    Marques, Jorge S.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 761 - 764
  • [30] Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
    Hu, Wenjian
    Singh, Rajiv R. P.
    Scalettar, Richard T.
    PHYSICAL REVIEW E, 2017, 95 (06)