Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification

被引:295
|
作者
Liu, Yihang [1 ]
Fang, Xin [2 ]
Zhang, Anyi [2 ]
Shen, Chenfei [2 ]
Liu, Qingzhou [2 ]
Enaya, Hani A. [3 ,4 ]
Zhou, Chongwu [1 ]
机构
[1] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[3] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia
[4] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
Sodium-ion batteries; High voltage cathode; Surface coating; Exfoliation; P2-Na-2/3[Ni1/3Mn2/3]O-2; Layered metal oxide cathode; POSITIVE ELECTRODE; P2-TYPE;
D O I
10.1016/j.nanoen.2016.06.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The P2 type Na-2/3[Ni1/3Mn2/3]O-2 is a high-voltage cathode material for Na-ion batteries with a theoretical capacity of 173 mA h/g and a long operation voltage plateau of 4.2 V. However, the material has exhibited unstable cycling performance within the high-voltage window, which severely limits its application. Moreover, its capacity decay mechanism is still unclear. In this study, we first investigate the difference between as-prepared and after-cycling Na-2/3[Ni1/3Mn2/3]O-2 samples, and then confirmed that the transition metal oxide layer exfoliation associated with the crystal phase transition during Na ion extraction and insertion is the main cause of capacity fading. The Al2O3 coated Na-2/3[Ni1/3Mn2/3]O-2 with enhanced cycling performance was prepared by taking the benefit of Al2O3 coating. The Na-2/3[Ni1/3Mn2/3]O-2 sample without any surface modification presented a 164 mA h/g initial specific discharge capacity within the voltage window from 2.5 V to 4.3 V, and the capacity decayed to 44 mA h/g at the 300th cycle, resulting in only a 26.8% retention. In contrast, the Al2O3-coated Na-2/3[Ni1/3Mn2/3]O-2 presented a similar initial capacity, but with an enhanced 73.2% retention after 300 cycles. The enhanced cycling stability observed in after-cycling characterization and analysis confirms that the Al2O3 surface coating can effectively suppress the unfavorable side reaction at high voltage and the exfoliation of the metal oxide layers. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [31] P2-Na2/3 Ni2/3Te1/3O2 Cathode for Na-ion Batteries with High Voltage and Excellent Stability
    Wang, Wenhui
    Zhang, Jiaolong
    Li, Chaolin
    Kou, Xiaohang
    Li, Baohua
    Yu, Denis Y. W.
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (02)
  • [32] P2-K0.75[Ni1/3Mn2/3]O2 Cathode Material for High Power and Long Life Potassium-Ion Batteries
    Jo, Jae Hyeon
    Choi, Ji Ung
    Park, Yun Ji
    Jung, Young Hwa
    Ahn, Docheon
    Jeon, Tae-Yeol
    Kim, Hyungsub
    Kim, Jongsoon
    Myung, Seung-Taek
    ADVANCED ENERGY MATERIALS, 2020, 10 (07)
  • [33] Application of P2-Na2/3Ni1/3Mn2/3O2Electrode to All-Solid-State 3 v Sodium(-Ion) Polymer Batteries
    Tatara, Ryoichi
    Suzuki, Hosei
    Hamada, Mizuki
    Kubota, Kei
    Kumakura, Shinichi
    Komaba, Shinichi
    Journal of Physical Chemistry C, 2022, 126 (48): : 20226 - 20234
  • [34] Electrochemical and Structural Study of Layered P2-Type Na2/3Ni1/3Mn2/3O2 as Cathode Material for Sodium-Ion Battery
    Wen, Yanfen
    Wang, Bei
    Zeng, Guang
    Nogita, Kazuhiro
    Ye, Delai
    Wang, Lianzhou
    CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (03) : 661 - 666
  • [35] P2-type Na2/3Ni1/3Mn2/3O2 Cathode Material with Excellent Rate and Cycling Performance for Sodium-Ion Batteries
    Mao, Jing
    Liu, Xin
    Liu, Jianwen
    Jiang, Heyang
    Zhang, Tao
    Shao, Guosheng
    Ai, Guo
    Mao, Wenfeng
    Feng, Yan
    Yang, Wanli
    Liu, Gao
    Dai, Kehua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (16) : A3980 - A3986
  • [36] Surface optimized P2-Na2/3Ni1/3Mn2/3O2 cathode material via conductive Al-doped ZnO for boosting sodium storage
    Xu, Kang
    Yan, Mengmeng
    Chang, Yu-Xin
    Xing, Xuanxuan
    Yu, Lianzheng
    Xu, Sailong
    ELECTROCHIMICA ACTA, 2022, 419
  • [37] Al2O3 coated Na0.44MnO2 as high-voltage cathode for sodium ion batteries
    Zhang, Yue
    Liu, Li
    Jamil, Sidra
    Xie, Jianjun
    Liu, Wen
    Xia, Jing
    Nie, Su
    Wang, Xianyou
    APPLIED SURFACE SCIENCE, 2019, 494 : 1156 - 1165
  • [38] Application of P2-Na2/3Ni1/3Mn2/3O2 Electrode to All-Solid-State 3 V Sodium(-Ion) Polymer Batteries
    Tatara, Ryoichi
    Suzuki, Hosei
    Hamada, Mizuki
    Kubota, Kei
    Kumakura, Shinichi
    Komaba, Shinichi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, : 20226 - 20234
  • [39] Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition
    Alvarado, Judith
    Ma, Chuze
    Wang, Shen
    Nguyen, Kimberly
    Kodur, Moses
    Meng, Ying Shirley
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) : 26518 - 26530
  • [40] Fast chargeable P2-K∼2/3[Ni1/3Mn2/3]O2 for potassium ion battery cathodes
    Nathan, Muthu Gnana Theresa
    Naveen, Nirmalesh
    Park, Woon Bae
    Sohn, Kee-Sun
    Pyo, Myoungho
    JOURNAL OF POWER SOURCES, 2019, 438