A reaction-diffusion approximation of a semilinear wave equation with damping

被引:0
|
作者
Sekisaka-Yamamoto, Hiroko [1 ]
机构
[1] RIKEN Ctr Adv Intelligence Project, Chuo Ku, Tokyo 1030027, Japan
关键词
Reaction-diffusion approximation; A priori estimate; Reaction-diffusion system; Semilinear wave equations; Semilinear damped wave equations; CAUCHY-PROBLEM; SPACE;
D O I
10.1007/s13160-022-00536-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction-diffusion approximation is a method that solutions of multi-component reaction-diffusion systems approximate those of differential equations. We introduce the reaction-diffusion approximations of a semilinear wave equation and a semilinear damped wave equation under some assumptions of a reaction term. These approximation systems consist of a two-component reaction-diffusion system with a small parameter. In this paper, we prove that a first component of a solution for the system converges to a solution for the semilinear damped wave equation as the parameter tends to zero. Moreover, let us show the numerical results of reaction-diffusion approximation for the wave equation and the damped wave equation, respectively.
引用
收藏
页码:921 / 941
页数:21
相关论文
共 50 条
  • [1] A reaction-diffusion approximation of a semilinear wave equation
    Ninomiya, Hirokazu
    Yamamoto, Hiroko
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 272 : 289 - 309
  • [2] A reaction–diffusion approximation of a semilinear wave equation with damping
    Hiroko Sekisaka-Yamamoto
    Japan Journal of Industrial and Applied Mathematics, 2022, 39 : 921 - 941
  • [3] Asymptotic stability of diffusion wave for a semilinear wave equation with damping
    Yong, Yan
    Su, Junmei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [4] On a semilinear fractional reaction-diffusion equation with nonlocal conditions
    Tran Ngoc Thach
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Duc Phuong
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5511 - 5520
  • [5] A Novel Discretization Method for Semilinear Reaction-Diffusion Equation
    Chen, Luoping
    Chen, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) : 409 - 423
  • [6] Attractors for the semilinear reaction-diffusion equation with distribution derivatives
    Xie, Yongqin
    Li, Qingsong
    Huang, Chuangxia
    Jiang, Yingjun
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)
  • [7] Traveling wave solutions to a reaction-diffusion equation
    Zhaosheng Feng
    Shenzhou Zheng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 756 - 773
  • [8] Traveling wave solutions to a reaction-diffusion equation
    Feng, Zhaosheng
    Zheng, Shenzhou
    Gao, David Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 756 - 773
  • [9] Wave solutions for a discrete reaction-diffusion equation
    Carpio, A
    Chapman, SJ
    Hastings, S
    McLeod, JB
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 : 399 - 412
  • [10] APPROXIMATE CONTROLLABILITY OF THE SEMILINEAR REACTION-DIFFUSION EQUATION GOVERNED BY A MULTIPLICATIVE CONTROL
    Ouzahra, Mohamed
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 1075 - 1090