Machine learning techniques for protein secondary structure prediction: An overview and evaluation

被引:26
|
作者
Yoo, Paul D. [1 ]
Zhou, Bing Bing [1 ]
Zomaya, Albert Y. [2 ,3 ]
机构
[1] Univ Sydney, Adv Networks Res Grp, Sch Informat Technol J12, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney Bioinformat Ctr, Sydney, NSW 2006, Australia
[3] Univ Sydney, Ctr Math Biol, Sydney, NSW 2006, Australia
关键词
amino acids encoding; evolutionary information; long-range dependencies; machine learning; protein secondary structure;
D O I
10.2174/157489308784340676
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of protein secondary structures is not only of great importance for many biological applications but also regarded as an important stepping stone for solving the mystery of how amino acid sequences fold into tertiary structures. Recent research on secondary structure prediction is mainly based on widely known machine learning techniques, such as Artificial Neural Networks and Support Vector Machines. The most significant breakthroughs were the incorporation of new biological information into an efficient prediction model and the development of new models which can efficiently exploit suitable information from its primary sequence. Hence this paper reviews the theoretical and experimental literature of these models with a focus on informational issues involving evolutionary and long-range information of protein sequences. Furthermore, we investigate several key issues in protein data processing which involve dimensionality reduction and encoding schemes.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [41] Stroke Risk Prediction with Machine Learning Techniques
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (13)
  • [42] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265
  • [43] Risk prediction of diabetic nephropathy using machine learning techniques: A pilot study with secondary data
    Maniruzzaman, Md.
    Islam, Md. Merajul
    Rahman, Md. Jahanur
    Hasan, Md. Al Mehedi
    Shin, Jungpil
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2021, 15 (05)
  • [44] Prediction of hypercholesterolemia using machine learning techniques
    Moradifar, Pooyan
    Amiri, Mohammad Meskarpour
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 255 - 265
  • [45] Machine learning techniques for dental disease prediction
    Iffat Firozy Rimi
    Md. Ariful Islam Arif
    Sharmin Akter
    Md. Riazur Rahman
    A. H. M. Saiful Islam
    Md. Tarek Habib
    Iran Journal of Computer Science, 2022, 5 (3) : 187 - 195
  • [46] An overview of machine learning and deep learning techniques for predicting epileptic seizures
    Zurdo-Tabernero, Marco
    Canal-Alonso, Angel
    de la Prieta, Fernando
    Rodriguez, Sara
    Prieto, Javier
    Corchado, Juan Manuel
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2024, 20 (04)
  • [47] Machine Learning in the detection and prediction of livestock diseases: an overview
    Vieto-Vega, Marco
    Moreno-Gonzalez, Yaliska
    MEMORIA INVESTIGACIONES EN INGENIERIA, 2024, (27): : 46 - 59
  • [48] Parallelized protein secondary structure prediction
    Qi, YT
    Lin, F
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2074 - 2077
  • [49] Calibrating the classifier for protein family prediction with protein sequence using machine learning techniques: An empirical investigation
    Idhaya, T.
    Suruliandi, A.
    Calitoiu, Dragos
    Raja, S. P.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (03)
  • [50] Protein secondary structure prediction using neural networks and deep learning: A review
    Wardah, Wafaa
    Khan, M. G. M.
    Sharma, Alok
    Rashid, Mahmood A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 81 : 1 - 8