Comparative H-mode density limit studies in JET and AUG

被引:17
|
作者
Huber, A. [1 ,2 ,38 ]
Bernert, M. [3 ,60 ]
Brezinsek, S. [2 ,40 ]
Chankin, A. V. [3 ]
Sergienko, G. [2 ,40 ]
Huber, V. [4 ]
Wiesen, S. [2 ,40 ]
Abreu, P. [5 ,51 ]
Beurskens, M. N. A. [6 ,14 ]
Boboc, A. [6 ,14 ]
Brix, M. [6 ,14 ]
Calabro, G. [7 ,85 ]
Carralero, D. [3 ,60 ]
Delabie, E. [8 ,39 ]
Eich, T. [3 ]
Esser, H. G. [2 ,40 ]
Groth, M. [9 ,12 ]
Guillemaut, C. [5 ,15 ]
Jachmich, S. [10 ,37 ,58 ]
Jaervinen, A. [9 ,10 ]
Joffrin, E. [8 ,11 ,15 ]
Kallenbach, A. [3 ,60 ]
Kruezi, U. [6 ,14 ]
Lang, P. [3 ]
Linsmeier, Ch. [2 ,40 ]
Lowry, C. G. [6 ]
Maggi, C. F. [6 ,60 ]
Matthews, G. F. [6 ,14 ]
Meigs, A. G. [6 ,14 ]
Mertens, Ph. [2 ,40 ]
Reimold, F. [2 ]
Schweinzer, J. [3 ]
Sips, G. [6 ]
Stamp, M. [6 ]
Viezzer, E. [3 ]
Wischmeier, M. [3 ,60 ]
Zohm, H. [3 ]
Abhangi, M. [45 ]
Abreu, P. [5 ,51 ]
Aftanas, M. [48 ]
Afzal, M. [14 ]
Aggarwal, K. M. [31 ]
Aho-Mantila, L. [105 ]
Ahonen, E. [12 ]
Aints, M. [101 ]
Airila, M. [105 ]
Albanese, R. [99 ]
Alegre, D. [57 ]
Alessi, E. [44 ]
Aleynikov, P. [53 ]
机构
[1] Culham Sci Ctr, EUROfus Consortium JET, Abingdon OX14 3DB, Oxon, England
[2] Forschungszentrum Julich GmbH, Inst Energie & Klimaforschung Plasmaphys, D-52425 Julich, Germany
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] Forschungszentrum Julich GmbH, Supercomputing Ctr, D-52425 Julich, Germany
[5] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[6] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[7] ENEA EUROfus, Via E Fermi 45, I-00044 Frascati, Italy
[8] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[9] Aalto Univ, Otakaari 4, Espoo 02015, Finland
[10] ERM KMS, Lab Plasma Phys, B-1000 Brussels, Belgium
[11] CEA, IRFM, F-13108 St Paul Les Durance, France
[12] Aalto Univ, FIN-00076 Aalto, Finland
[13] BCS, Barcelona, Spain
[14] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[15] IRFM, CEA, F-13108 St Paul Les Durance, France
[16] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[17] Consorzio CREATE, I-80125 Naples, Italy
[18] Consorzio RFX, I-35127 Padua, Italy
[19] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[20] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[21] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[22] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[23] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[24] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[25] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[26] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[27] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[28] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[29] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[30] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[31] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[32] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[33] Dublin City Univ, Dublin, Ireland
[34] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[35] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[36] EUROfus Programme Management Unit, D-85748 Garching, Germany
[37] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[38] European Commiss, B-1049 Brussels, Belgium
[39] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[40] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[41] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[42] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[43] Gen Atom, San Diego, CA 85608 USA
[44] IFP CNR, I-20125 Milan, Italy
[45] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[46] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[47] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[48] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[49] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[50] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
关键词
Density limit; H-mode; Detachment; Greenwald fraction; JET; ASDEX Upgrade; ITER-LIKE WALL; DETACHMENT;
D O I
10.1016/j.nme.2017.01.005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Identification of the mechanisms for the H-mode density limit in machines with fully metallic walls, and their scaling to future devices is essential to find for these machines the optimal operational boundaries with the highest attainable density and confinement. Systematic investigations of H-mode density limit plasmas in experiments with deuterium external gas fuelling have been performed on machines with fully metallic walls, JET and AUG and results have been compared with one another. Basically, the operation phases are identical for both tokamaks: the stable H-mode phase, degrading H-mode phase, breakdown of the H-mode with energy confinement deterioration usually accompanied by a dithering cycling phase, followed by the l -mode phase. The observed H-mode density limit on both machines is found close to the Greenwald limit (n/n GW = 0.8-1.1 in the observed magnetic configurations). The similar behavior of the radiation on both tokamaks demonstrates that the density limit (DL) is neither related to additional energy losses from the confined region by radiation, nor to an inward collapse of the hot discharge core induced by overcooling of the plasma periphery by radiation. It was observed on both machines that detachment, as well as the X-point MARFE itself, does not trigger a transition in the confinement regime and thus does not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the transition from H-to L-mode. The measured Greenwald fractions are found to be consistent with the predictions from different theoretical models [16,30] based on MHD instability theory in the near-SOL. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 50 条
  • [31] The dependence of exhaust power components on edge gradients in JET-C and JET-ILW H-mode plasmas
    Field, A. R.
    Challis, C. D.
    Fontdecaba, J. M.
    Frassinetti, L.
    Horvath, L.
    Kim, Hyun-Tae
    Maggi, C.
    Roach, C. M.
    Saarelma, S.
    Sertoli, M.
    Szepeisi, G.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
  • [32] The effect of plasma shaping on high density H-mode SOL profiles and fluctuations in TCV
    Stagni, A.
    Vianello, N.
    Agostini, M.
    Colandrea, C.
    Gorno, S.
    Labit, B.
    Sheikh, U.
    Simons, L.
    Sun, G.
    Tsui, C. K.
    Ugoletti, M.
    Wang, Y.
    Wuethrich, C.
    Boedo, J. A.
    Reimerdes, H.
    Theiler, C.
    NUCLEAR FUSION, 2024, 64 (02)
  • [33] Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges
    Kallenbach, A.
    Sun, H. J.
    Eich, T.
    Carralero, D.
    Hobirk, J.
    Scarabosio, A.
    Siccinio, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (04)
  • [34] Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall
    Beurskens, M. N. A.
    Frassinetti, L.
    Challis, C.
    Osborne, T.
    Snyder, P. B.
    Alper, B.
    Angioni, C.
    Bourdelle, C.
    Buratti, P.
    Crisanti, F.
    Giovannozzi, E.
    Giroud, C.
    Groebner, R.
    Hobirk, J.
    Jenkins, I.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    Mantica, P.
    McDonald, D.
    Nunes, I.
    Rimini, F.
    Saarelma, S.
    Voitsekhovitch, I.
    de Vries, P.
    Zarzoso, D.
    NUCLEAR FUSION, 2013, 53 (01)
  • [35] Divertor particle and power deposition profiles in JET ELMy H-mode discharges
    Jachmich, S.
    Eich, T.
    Fundamenski, W.
    Kallenbach, A.
    Pitts, R. A.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) : 1050 - 1055
  • [36] L- to H-mode transitions at low density in ASDEX Upgrade
    Sauter, P.
    Puetterich, T.
    Ryter, F.
    Viezzer, E.
    Wolfrum, E.
    Conway, G. D.
    Fischer, R.
    Kurzan, B.
    McDermott, R. M.
    Rathgeber, S. K.
    NUCLEAR FUSION, 2012, 52 (01)
  • [37] H-mode dithering phase studies on ST40
    Andrew, Yasmin
    Bland, James
    Buxton, Peter
    Dnestrovskij, Alexei
    Gryaznevich, Mikhail
    Kim, Eun-jin
    Romanelli, Michele
    Sertoli, Marco
    Thomas, Paul
    Varje, Jari
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2242):
  • [38] Operational limits for high edge density H-mode tokamak operation
    Suttrop, W
    Mertens, V
    Murmann, H
    Neuhauser, J
    Schweinzer, J
    JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 118 - 123
  • [39] First results of high density H-mode operation in metal-wall EAST tokamak
    Hou, Jilei
    Yan, Ning
    Yang, Qingquan
    Zuo, Guizhong
    Hu, Jiansheng
    Zhong, Fubin
    Hu, Wenhui
    Tang, Panjun
    Nan, Kaibo
    Meng, Lingyi
    Mao, Songtao
    Zhao, Hailin
    Gao, Wei
    Lin, Guangle
    Yuan, Jingsheng
    Yu, Yaowei
    Chen, Yue
    Yuan, Xiaolin
    RESULTS IN PHYSICS, 2024, 56
  • [40] Physics of and achievements with the H-mode
    Wagner, F.
    TURBULENT TRANSPORT IN FUSION PLASMA, 2008, 1013 : 143 - 165