THE RECURSION OPERATOR FOR A CONSTRAINED CKP HIERARCHY

被引:0
|
作者
Li Chuanzhong [1 ]
Tian Kelei [1 ]
He Jingsong [1 ,2 ]
Cheng Yi [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
关键词
recursion operator; constrained CKP hierarchy; mKdV hierarchy; KADOMTSEV-PETVIASHVILI EQUATION; BI-HAMILTONIAN STRUCTURES; EVOLUTION-EQUATIONS; KP HIERARCHIES; TRANSFORMATION; SYMMETRIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper gives a recursion operator for a 1-constrained CKP hierarchy, and by the recursion operator it proves that the 1-constrained CKP hierarchy can be reduced to the mKdV hierarchy under condition q = r.
引用
收藏
页码:1295 / 1302
页数:8
相关论文
共 50 条
  • [41] Hierarchy and Recursion in Software and Hardware
    Skliarova, Iouliia
    Sklyarov, Valery
    2012 8TH INTERNATIONAL CONFERENCE ON COMPUTING AND NETWORKING TECHNOLOGY (ICCNT, INC, ICCIS AND ICMIC), 2012, : 189 - 194
  • [42] Tau function of the CKP hierarchy and nonlinearizable virasoro symmetries
    Chang, Liang
    Wu, Chao-Zhong
    NONLINEARITY, 2013, 26 (09) : 2577 - 2596
  • [44] A combined integrable hierarchy with four potentials and its recursion operator and bi-Hamiltonian structure
    Ma, Wen-Xiu
    INDIAN JOURNAL OF PHYSICS, 2024, : 1063 - 1069
  • [45] LIMITING RECURSION AND ARITHMETIC HIERARCHY
    CRISCUOLO, G
    MINICOZZI, E
    TRAUTTEUR, G
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1975, 9 (NR3): : 5 - 12
  • [46] CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae
    Van de Leur, Johan W.
    Orlov, Alexander Yu
    Shiota, Takahiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [47] A COMBINED KAUP-NEWELL TYPE INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR POTENTIALS AND A HEREDITARY RECURSION OPERATOR
    Ma, Wen-xiu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [48] A strange recursion operator demystified
    Sergyeyev, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (15): : L257 - L262
  • [49] JUMP OPERATOR IN SET RECURSION
    NORMANN, D
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (03): : 251 - 264
  • [50] Tau-Function of the Multi-component CKP Hierarchy
    A. Zabrodin
    Mathematical Physics, Analysis and Geometry, 2024, 27