Finite element approximation of fractional Neumann problems

被引:0
作者
Bersetche, Francisco M. [1 ]
Pablo Borthagaray, Juan [1 ]
机构
[1] Univ Republ, Dept Matemat & Estadist Litoral, Salto 50000, Uruguay
关键词
FEM; fractional Laplacian; Neumann boundary condition; A-PRIORI; REGULARITY;
D O I
10.1093/imanum/drab064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider approximations of Neumann problems for the integral fractional Laplacian by continuous, piecewise linear finite elements. We analyze the weak formulation of such problems, including their well-posedness and asymptotic behavior of solutions. We address the convergence of the finite element discretizations and discuss the implementation of the method. Finally, we present several numerical experiments in one- and two-dimensional domains that illustrate the method's performance as well as certain properties of solutions.
引用
收藏
页码:3207 / 3240
页数:34
相关论文
共 32 条
[1]   Numerical approximations for a fully fractional Allen-Cahn equation [J].
Acosta, Gabriel ;
Bersetche, Francisco M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 :S3-S28
[2]   FINITE ELEMENT APPROXIMATIONS FOR FRACTIONAL EVOLUTION PROBLEMS [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (03) :767-794
[3]   Finite element approximations of the nonhomogeneous fractional Dirichlet problem [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan ;
Heuer, Norbert .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (03) :1471-1501
[4]   A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :784-816
[5]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[6]   Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver [J].
Ainsworth, Mark ;
Glusa, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :4-35
[7]   ANALYSIS AND APPROXIMATION OF A FRACTIONAL CAHN-HILLIARD EQUATION [J].
Ainsworth, Mark ;
Mao, Zhiping .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1689-1718
[8]   External optimal control of fractional parabolic PDEs [J].
Antil, Harbir ;
Verma, Deepanshu ;
Warma, Mahamadi .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
[9]   External optimal control of nonlocal PDEs [J].
Antil, Harbir ;
Khatri, Ratna ;
Warma, Mahamadi .
INVERSE PROBLEMS, 2019, 35 (08)
[10]  
Audrito A., 2020, ARXIV200610026