Antiferroelectric-to-ferroelectric phase transition in hexagonal rare-earth iron oxides

被引:11
作者
Chen, Binjie [1 ]
Hasegawa, Tetsuya [2 ]
Ohta, Hiromichi [3 ]
Katayama, Tsukasa [3 ,4 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, N14W9, Sapporo, Hokkaido 0600814, Japan
[2] Univ Tokyo, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan
[3] Hokkaido Univ, Res Inst Elect Sci, Kita Ku, N20W10, Sapporo, Hokkaido 0010020, Japan
[4] JST PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
ROOM-TEMPERATURE; THIN-FILMS; MULTIFERROISM; BEHAVIOR; SURFACE; COBALT; ORDER; FIELD;
D O I
10.1039/d1tc05944k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ferroic oxides often exhibit exotic behavior, accompanied by phase transitions. Hexagonal rare-earth iron oxides (h-RFeO3), a promising multiferroic system, have been reported to exhibit ferroelectricity (FE) when the lattice parameter ratio (c/a) exceeds 1.93 and antiferroelectricity (AFE) when c/a is equal to 1.89. Although the AFE-FE phase boundary in the h-RFeO3 systems is assumed to exist at c/a approximate to 1.9, the phase transition has not been observed so far due to the lack of samples with such a c/a ratio. In this study, we show the AFE-FE phase transition in h-RFeO3 films, where R = Dy. We fabricated h-DyFeO3 films with c/a ratios of 1.90-1.92 by controlling the film thicknesses. The h-DyFeO3 films with a c/a ratio of 1.91 exhibited AFE at temperatures below 200 K and FE at temperatures up to 300 K. The phase transition temperature (T-p) was modulated by the c/a ratio. The films also underwent an AFE-FE phase transition upon adjusting the frequency of the voltage applied at the T-p. We discuss the possible origin of the AFE-FE phase transition from the viewpoint of the migration length of the FE domain wall motion.
引用
收藏
页码:5621 / 5626
页数:6
相关论文
共 44 条
[1]   Electrically tunable materials for microwave applications [J].
Ahmed, Aftab ;
Goldthorpe, Irene A. ;
Khandani, Amir K. .
APPLIED PHYSICS REVIEWS, 2015, 2 (01)
[2]   Multiferroism in hexagonally stabilized TmFeO3 thin films below 120 K [J].
Ahn, Suk-Jin ;
Lee, Jung-Hoon ;
Jang, Hyun Myung ;
Jeong, Young Kyu .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (23) :4521-4525
[3]   Artificially imposed hexagonal ferroelectricity in canted antiferromagnetic YFeO3 epitaxial thin films [J].
Ahn, Suk-Jin ;
Lee, Jung-Hoon ;
Jeong, Young Kyu ;
Na, Eun-Hye ;
Koo, Yang Mo ;
Jang, Hyun Myung .
MATERIALS CHEMISTRY AND PHYSICS, 2013, 138 (2-3) :929-936
[4]   XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu-Lu) [J].
Bossak, AA ;
Graboy, IE ;
Gorbenko, OY ;
Kaul, AR ;
Kartavtseva, MS ;
Svetchnikov, VL ;
Zandbergen, HW .
CHEMISTRY OF MATERIALS, 2004, 16 (09) :1751-1755
[5]   Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic [J].
Chae, S. C. ;
Horibe, Y. ;
Jeong, D. Y. ;
Rodan, S. ;
Lee, N. ;
Cheong, S. -W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (50) :21366-21370
[6]  
Chiba D, 2011, NAT MATER, V10, P853, DOI [10.1038/nmat3130, 10.1038/NMAT3130]
[7]   ORIGIN OF FERROELECTRICITY IN PEROVSKITE OXIDES [J].
COHEN, RE .
NATURE, 1992, 358 (6382) :136-138
[8]   Bulk magnetoelectricity in the hexagonal manganites and ferrites [J].
Das, Hena ;
Wysocki, Aleksander L. ;
Geng, Yanan ;
Wu, Weida ;
Fennie, Craig J. .
NATURE COMMUNICATIONS, 2014, 5
[9]   Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3 [J].
Disseler, Steven M. ;
Borchers, Julie A. ;
Brooks, Charles M. ;
Mundy, Julia A. ;
Moyer, Jarrett A. ;
Hillsberry, Daniel A. ;
Thies, Eric L. ;
Tenne, Dmitri A. ;
Heron, John ;
Holtz, Megan E. ;
Clarkson, James D. ;
Stiehl, Gregory M. ;
Schiffer, Peter ;
Muller, David A. ;
Schlom, Darrell G. ;
Ratcliff, William D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (21)
[10]   Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors [J].
Do Kim, Keum ;
Lee, Young Hwan ;
Gwon, Taehong ;
Kim, Yu Jin ;
Kim, Han Joon ;
Moon, Taehwan ;
Hyun, Seung Dam ;
Park, Hyeon Woo ;
Park, Min Hyuk ;
Hwang, Cheol Seong .
NANO ENERGY, 2017, 39 :390-399