A Hele-Shaw Limit Without Monotonicity

被引:15
|
作者
Guillen, Nestor [1 ]
Kim, Inwon [2 ]
Mellet, Antoine [3 ]
机构
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
[2] UCLA, Dept Math, Los Angeles, CA 90024 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
DIFFUSION; EQUATION; UNIQUENESS; EXISTENCE; MODEL;
D O I
10.1007/s00205-021-01750-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the incompressible limit of the porous medium equation with a right hand side representing either a source or a sink term, and an injection boundary condition. This model can be seen as a simplified description of non-monotone motions in tumor growth and crowd motion, generalizing the congestion-only motions studied in recent literature (Alexander et al. in Nonlinearity 27(4):823-858, 2014; Perthame et al. in Arch Ration Mech Anal 212(1):93-127, 2014; Kim and Pozar in Trans Am Math Soc 370(2):873-909, 2018; Mellet et al. in J Funct Anal 273(10):3061-3093, 2017). We characterize the limit density, which solves a free boundary problem of Hele-Shaw type in terms of the limit pressure. The novel feature of our result lies in the characterization of the limit pressure, which solves an obstacle problem at each time in the evolution.
引用
收藏
页码:829 / 868
页数:40
相关论文
共 50 条
  • [21] Controlling fingering instabilities in Hele-Shaw flows in the presence of wetting film effects
    Anjos, Pedro H. A.
    Zhao, Meng
    Lowengrub, John
    Bao, Weizhu
    Li, Shuwang
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [22] Mixing layer and turbulent jet flow in a Hele-Shaw cell
    Chesnokov, Alexander
    Liapidevskii, Valery
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 125
  • [23] THE SHAPE CONTROL OF A GROWING AIR BUBBLE IN A HELE-SHAW CELL
    Savina, T. V.
    Nepomnyashchy, A. A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1261 - 1274
  • [24] Asymptotic analysis of a contact Hele-Shaw problem in a thin domain
    Mel'nyk, Taras
    Vasylyeva, Nataliya
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (05):
  • [25] The Hele-Shaw injection problem for an extremely shear-thinning fluid
    Richardson, G.
    King, J. R.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 563 - 594
  • [27] On 2D approximations for dissolution problems in Hele-Shaw cells
    Guo, Jianwei
    Laouafa, Farid
    Quintard, Michel
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (03)
  • [28] Well-Posedness of a Diffuse Interface model for Hele-Shaw Flows
    Andrea Giorgini
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [29] Roll waves structure in two-layer Hele-Shaw flows
    Chesnokov, Alexander
    Liapidevskii, Valery
    Stepanova, Irina
    WAVE MOTION, 2017, 73 : 1 - 10
  • [30] Precipitate Patterns in a Hele-Shaw Cell with Small Sinusoidal Height Variations
    Wang, Qingpu
    Zanotto, Franco M.
    Steinbock, Oliver
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (39): : 21617 - 21624