A Hele-Shaw Limit Without Monotonicity

被引:15
|
作者
Guillen, Nestor [1 ]
Kim, Inwon [2 ]
Mellet, Antoine [3 ]
机构
[1] Texas State Univ, Dept Math, San Marcos, TX 78666 USA
[2] UCLA, Dept Math, Los Angeles, CA 90024 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
DIFFUSION; EQUATION; UNIQUENESS; EXISTENCE; MODEL;
D O I
10.1007/s00205-021-01750-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the incompressible limit of the porous medium equation with a right hand side representing either a source or a sink term, and an injection boundary condition. This model can be seen as a simplified description of non-monotone motions in tumor growth and crowd motion, generalizing the congestion-only motions studied in recent literature (Alexander et al. in Nonlinearity 27(4):823-858, 2014; Perthame et al. in Arch Ration Mech Anal 212(1):93-127, 2014; Kim and Pozar in Trans Am Math Soc 370(2):873-909, 2018; Mellet et al. in J Funct Anal 273(10):3061-3093, 2017). We characterize the limit density, which solves a free boundary problem of Hele-Shaw type in terms of the limit pressure. The novel feature of our result lies in the characterization of the limit pressure, which solves an obstacle problem at each time in the evolution.
引用
收藏
页码:829 / 868
页数:40
相关论文
共 50 条
  • [1] A HELE-SHAW LIMIT WITH A VARIABLE UPPER BOUND AND DRIFT
    Chu, Raymond
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4938 - 4976
  • [2] The Hele-Shaw Asymptotics for Mechanical Models of Tumor Growth
    Perthame, Benoit
    Quiros, Fernando
    Luis Vazquez, Juan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (01) : 93 - 127
  • [3] L1-Theory for Hele-Shaw flow with linear drift
    Igbida, Noureddine
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (07): : 1545 - 1576
  • [4] COMPUTATION OF A SHRINKING INTERFACE IN A HELE-SHAW CELL
    Zhao, Meng
    Li, Xiaofan
    Ying, Wenjun
    Belmonte, Andrew
    Lowengrub, John
    Li, Shuwang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : B1206 - B1228
  • [5] Polygonal Hele-Shaw problem with surface tension
    Kimura, Masato
    Tagami, Daisuke
    Yazaki, Shigetoshi
    INTERFACES AND FREE BOUNDARIES, 2013, 15 (01) : 77 - 93
  • [6] A dynamical mother body in a Hele-Shaw problem
    Savina, T. V.
    Nepomnyashchy, A. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (14-15) : 1156 - 1163
  • [7] Bubble dynamics in an inclined Hele-Shaw cell
    Monnet, Benjamin
    Jerome, John Soundar
    Vidal, Valerie
    Joubaud, Sylvain
    PHYSICAL REVIEW FLUIDS, 2024, 9 (07):
  • [8] Local Regularization of the One-phase Hele-Shaw Flow
    Choi, Sunhi
    Jerison, David
    Kim, Inwon
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) : 2765 - 2804
  • [9] Hele-Shaw flow as a singular limit of a Keller-Segel system with nonlinear diffusion
    Mellet, Antoine
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [10] Interface evolution: the Hele-Shaw and Muskat problems
    Cordoba, Antonio
    Cordoba, Diego
    Gancedo, Francisco
    ANNALS OF MATHEMATICS, 2011, 173 (01) : 477 - 542