An atomic funnel for atom interferometry

被引:1
|
作者
McIntyre, DH
Mayer, SK
Silva, NJ
机构
来源
ATOM OPTICS | 1997年 / 2995卷
关键词
laser cooling; magneto-optic trap; atomic funnel; atom interferometry; Zeeman slowing; atomic beam deflection; microfabricated gratings;
D O I
10.1117/12.273773
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have developed a rubidium atomic funnel for use as a matter-wave source in experiments in atom interferometry and atom optics. The funnel utilizes the techniques of laser cooling and trapping to produce a low-velocity beam of cold rubidium atoms. Atoms from a thermal beam are first slowed in a tapered magnetic field using one-dimensional Zeeman slowing. The atoms are then loaded into a two-dimensional magneto-optic trap or atomic funnel. The trap cools and compresses the atoms, which are then ejected from the trap by moving molasses formed with frequency-shifted laser beams. These slow atoms will be diffracted by microfabricated transmission gratings as part of a three-grating atom interferometer.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [41] Optimal control of Raman pulse sequences for atom interferometry
    Saywell, Jack
    Carey, Max
    Belal, Mohammad
    Kuprov, Ilya
    Freegarde, Tim
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (08)
  • [42] AC Atom Interferometry with Quantum Lock-in Sensing
    Coslovsky, Jonathan
    Afek, Gadi
    Davidson, Nir
    SLOW LIGHT, FAST LIGHT, AND OPTO- ATOMIC PRECISION METROLOGY X, 2017, 10119
  • [43] Limitations of atom interferometry for gravitational wave observations in space
    Bender, Peter L.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (03) : 711 - 717
  • [44] A marginally stable optical resonator for enhanced atom interferometry
    Riou, I.
    Mielec, N.
    Lefevre, G.
    Prevedelli, M.
    Landragin, A.
    Bouyer, P.
    Bertoldi, A.
    Geiger, R.
    Canuel, B.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (15)
  • [45] Limitations of atom interferometry for gravitational wave observations in space
    Peter L. Bender
    General Relativity and Gravitation, 2012, 44 : 711 - 717
  • [46] Testing gravity with cold atom interferometry: results and prospects
    Tino, Guglielmo M.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
  • [47] Active SU(1,1) atom interferometry
    Linnemann, D.
    Schulz, J.
    Muessel, W.
    Kunkel, P.
    Pruefer, M.
    Froelian, A.
    Strobel, H.
    Oberthaler, M. K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (04):
  • [48] Diffracted near field of hollow optical fibre for a novel atomic funnel
    Yoo, SH
    Won, C
    Kim, JA
    Kim, K
    Shim, U
    Oh, K
    Paek, UC
    Jhe, W
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (04) : 364 - 370
  • [49] The Raman Laser system for Mach-Zehnder Atom Interferometry
    Li, Nan
    Huang, Kaikai
    Lu, Xuanhui
    2016 EUROPEAN FREQUENCY AND TIME FORUM (EFTF), 2016,
  • [50] MAGIA - using atom interferometry to determine the Newtonian gravitational constant
    Stuhler, J
    Fattori, M
    Petelski, T
    Tino, GM
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S75 - S81